
Using FSPMA

Peter Sykacek1,2, Rob Furlong2

1Department of Genetics &
2Department of Pathology
University of Cambridge

peter@sykacek.net

June 16, 2005

Abstract

The purpouse of this document is to show, how to set up basic definition files for FSPMA and
illustrate some further functionality of the library. The data used for the experiments was extracted
from a mouse testis development time course. Analysis captures in essence most scenarios one can find
in microarray experiments. The examples cover quantified CDNA type data (or other two channel
technology), single channel data like Affymetrix and preprocessed meta information. All experiments
can be replicated by the user since all relevant data is provided with the library. The code of the
library is at several occasions closely linked with code from YASMA and thus provided under the
GPL 2 license.

The most important implication of the GPL 2 license is that FSPMA is free software and comes
with NO WARRANTY.

1 Introduction

This tutorial was generated from “fspma.Rnw” using Sweave [1]. All experiments can thus be run as
discussed below, once the library has been installed and the relevant archives have been copied to a local
directory. We illustrate five different scenarios that can emerge in microarray analysis. We analyse exper-
iments with data from two colour arrays (CDNA or two colour oligo arrays), from one channel arrays (e.g.
as one obtains from the Affymetrix platform) or with data that underwent some form of preprocessing.
Here we provide data that is already on a transformed scale and another experiment on data that was
normalised before. Finally we provide examples that illustrate FSPMA’s data visualisation capabilities
and an interaction of FSPMA based microarray analysis and the use of functions from other libraries.
The following table helps establishing the relation between the archives in the “$FSPMAHOME$/doc/”
directory and the examples it represents. The symbol “$FSPMAHOME$” refers to the directory FSPMA
is installed in. It can be found in R using FSPMA’s online help and following the link package overview.

Experiments archive
two channel analysis and FSPMA based visualisations “twochannel.zip”
single channel analysis “singlechannel.zip”
analysis of transformed data (e.g. log or variance stabilising) “logsingle.zip”
analysis of normalised data “normsingle.zip”
interfacing with other libraries “libinterface.zip”

On machines that have a working“make”command available, the“Makefile”in the“$FSPMAHOME$/doc/”
directory allows to automate running all examples in the Sweave file “fspma.Rnw”. After copying all zip
archives and the make file into a local directory, the commands “make preprnwrun” and “make fspma.pdf”
will run Sweave and convert the resulting LaTex source into a pdf file. Note that running Sweave like
that (via an R batch call) will take about 5 minutes and not produce any visual output. The data in all
examples is meant for illustration purpouse. It consists of a short subset of genes that were measured in a
mouse testis time course. All datasets have been constructed from the same origin and thus give identical
results. This excludes the last example where we show how to merge FSPMA with other libraries using
some functions of YASMA [4] as an example.

1

2 Remark on Computational Complexity

Before we start describing these experiments we would like to add a note on the computational complexity
of FSPMA’s algorithms. In this tutorial data is only a very small subset of what we would expect in real
experiments and there are no timing problems. In general things are not too time consuming, however
there are two exceptions. If one specifies a“base level comparison”, this acts as a short cut for all pair wise
contrasts that involve this level. The algorithm thus calculates p-values of a matrix of number of genes
times number of levels in the rank effect minus one, which takes some time. The other time consuming
operation is imputing by k nearest neighbours. This can, depending on the number of samples that are
imputed, take up to a couple of hours for a “real world” dataset.

3 Analysis of two channel data

The first experiment illustrates how to use FSPMA’s definition file for analysing two channel data from
a balanced time course experiment. The requirement of a balanced experimental design results form the
fact that we internally use YASMA. Compared to other packages YASMA has the advantage of allowing
a precise specification of nested effects. We obtain therefore more realistic p-values. The following code
fragment will load the data and perform all analysis steps. The example generates a set of output files
that rank genes that were after p-value adjustment found to be significant under the specified threshold.

> library(fspma)

Loading required package: yasma
Loading required package: nlme

Attaching package: 'nlme'

The following object(s) are masked from package:stats :

contr.SAS

> ret <- fspma.wrapper("twochannel.def")

Run started on - Thu Jun 16 2005 13:00:22

Loading info from file.
Checking consistency of the definition file twochannel.def was successful.
Loading RG data.
Reading File: R35_NIA1_AWX_ad_612_Fl_output.tsv
Reading File: R35_NIA1_AWX_ad_613_Fl_output.tsv
Reading File: R35_NIA1_AWX_ad_629b_Fl_output.tsv
Reading File: R35_NIA1_AWX_ad_630_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s16_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s17_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s18_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s21_Fl_output.tsv
Reading File: R25_NIA1_AWX_d05_s13_Fl_output.tsv
Reading File: R35_NIA1_AWX_d05_545_Fl_output.tsv
Reading File: R35_NIA1_AWX_d05_546_Fl_output.tsv
Reading File: R35_NIA1_AWX_d05_547_Fl_output.tsv
Reading File: R25_NIA1_AWX_d10_s28_Fl_output.tsv
Reading File: R35_NIA1_AWX_d10_596_Fl_output.tsv
Reading File: R35_NIA1_AWX_d10_597_Fl_output.tsv
Reading File: R35_NIA1_AWX_d10_600_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_594_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_605_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_671_Fl_output.tsv

2

Reading File: R35_NIA1_AWX_d15_674_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_653_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_654_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_655b_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_670_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_631_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_632_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_633_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_651_Fl_output.tsv
Number of NA entries from channel: 0.
Number of NA entries from flag: 0
Number of NA entries after imputing: 0
Getting model.info
Do classical normalization.
Normalising by: location
Normalising by: scale
Write raw data to files.
Convert RG data to log ratios.
Calculating ANOVA and write table and variance components.
Loading required package: MASS
...Getting number of comparisons
Ranking by Variety.
ANOVA ranking.
Contrast based ranking
base: 1 - shortcut for several contrasts, be patient!
contrast: -0.333333333333333,0.25,0.25,0.25,0.25,-0.333333333333333,-0.333333333333333
Processing completed.

The entire logic of microarray analysis with FSPMA is thus packed into the definition file and no coding is
required to adapt analysis to different types of experiments, of course within the limits of the underlying
package, which restricts it to balanced reference designs.

3.1 Log file of the fspma.wrapper run

Calling fspma.wrapper as shown in the previous R code fragment will produce several files as output.
One of these files is an ASCII text file that stores log information. This log file is intended to provide a
protocol of all steps taken during analysis. It contains in essence the same output, one obtains in the R
console window. The default filename of this log file is “fspma.log.txt”. It may be changed by overriding
the log.fname parameter of fspma.wrapper. The log-file is in particular important to debug definition
files. After parsing the file, fspma.wrapper checks the information for consistency. All inconsistencies
are reported and written into the log file. Most problems should therefore be caught before the microarray
data gets loaded, which is important, because up following analysis can take some time.

3.2 Comments on “twochannel.def”

3.2.1 The experiment

The first part of any analysis is to specify the experimental layout. Here we have a time course experiment
with 7 time points, 4 biological replicates and 2 on slide replicates per gene. If some of the genes have
more replicates, one specifies the minimum number and FSPMA’s data loader discards the excess in
essence randomly. Otherwise the result would be biased.

00
Number of levels of all effects that appear in the experiment. The last
is the minimum number of replicates per slide and must be specified.
Effects: 7 4 2
Is experiment Unbalanced:
Is.Unbalanced: F
Effect Names: We have thus 5 time points and 2 samples per time point

3

Eff.Nams: time sample rep
of which sample and replicate on slide are random effects (all that are not listed exhaustively)
RandEffs: F T T
over which effect should be ranked - We rank over time here.
Rank.Eff: 1
Names of each ranking dimension (will become R variable names)
Rank.Names: adult day.1 day.5 day.10 day.15 day.23 day.35

It is vital to understand the difference between random and fixed effects: from the experimental point
of view random effects are not listed exhaustively. For random effects, statements about significant
differences of averages make no sense, since there are many other levels that did not find their way onto
the analysis. Fixed effects on the other hand are such, where all levels are listed exhaustively (e.g. dye
swap) or levels not covered by analysis are not of interest. The rank effect - in this case time - is always
a fixed effect. Here we do thus not aim at conclusions that generalise to time points not covered by the
experiment. Note that we have 7 time points, all have a “rank name”. This is a name that should allow
for easy identification of a level. Depending on how we analyse the data, rank names are possibly used
in output file names, to refer to a particular pair wise comparison and as column headers in these files,
to identify the average log ratios found at that level. The assignment of measurements (i.e. slide files) to
every combination of levels is discussed later.

3.2.2 Contrasts and output files

The most important result of every FSPMA run is a set of (tab delimited) ASCII text files. We get two
files that store normalized data and effects in a row format. Each row corresponds to a known effect
combination and all corresponding expression values. Gene names are identified by the column header.
The main reason for providing this output is to convert data to a standardised format that can be used
as a starting point for other types of data analysis. Processing “twochannels.def”, we get this information
in twochannel data normlogrt.tsv and twochannel data normeffdesc.tsv. The next output concerns the
ANOVA table and the variance components. They are put into a text file named twochannel aov.txt.
Finally each comparison generates a rank list of significant genes as tab delimited text file. The p-values
are adjusted for multiple comparisons, where fspma.wrapper uses the number of all comparison that
were specified in one definition file for this adjustment. It is thus important to place all comparisons in one
file - otherwise the adjustments are not correct. This analysis generates anova.rank.twochannel comp.tsv
for the ANOVA based ranking, test.variety.twochannel comp.tsv for the ranking based on average channel
log ratios, and test.day.1.bladulttwochannel comp.tsv to test.day.35.bladulttwochannel comp.tsv for all pair
wise comparisons of the adult generation against all other time points. We also provide a more general
comparison that is based on a contrast. This comparison tests for significant differences when comparing
the average log ratios of day 23, day 35 and adult against those of day 1 up to day 15. The result of
this test is stored in file test.ct.ad23.d1d15.twochannel comp.tsv. The filenames are specified by definition
file entries, which in case of all rank tables are generated by concatenating the contrast name (or a
string derived thereof) and the corresponding base filename entry (Contrast.Outfile:) in the definition
file. FSPMA uses “anova.rank” for anova based ranking and “test.variety” for the test of average channel
differences. Base level comparisons are short cuts for all binary comparisons of the base level against the
remaining levels. In this case FSPMA concatenates the base level name (bladult) and the corresponding
rank name (e.g. test.day.1.bladult). If we want to test for significant differences w.r.t. states that are
known to be constant for more than one time point, we have to use a more general contrast. As an
example, we might be interested to test for significant differences in the average log ratios of day35 and
adult agaist the average log ratios of all other time points. Such comparisons can be specified as vector of
0’s, -1’s and 1’s. FSPMA requires such contrasts to be named (the name is used to generate the output
filename) and to specify a vector of as many 0’s, 1’s and -1’s, as there are levels in the rank effect. Zero
entries are excluded from the comparison. All ones and minus ones are grouped, to form a statistic that
is used to obtain p-values of the null hypothesis that there is no significant difference between the groups.
The result of this comparison is written into file test.ct.ad23.d1d15.twochannel comp.tsv. The relevant
definition file entries are:

00
We may also specify a comparison of average difference in d35 and adult versus all earlier
development stages. (This is useful to rank w.r.t. biological states that are known to be constant
for certain development periods.)

4

Base.Contrast: ct.ad23.d1d15 -1 1 1 1 1 -1 -1
Example for general ranking against first time point
bladult : base level adult (here a short cut for 6 pair wise contrasts − > expect some
computation if your data contains the full transcriptome!).
Base.Contrast: bladult 1
Anova based ranking : for each gene we calculate an anova and test
whether all means are identical.
Base.Contrast: ANOVA
finally if we are interested in significant differences between colours we may chose VARIETY.
This type of comparison corresponds to the yasma non bootsrap tests.
Base.Contrast: VARIETY
Output file to write the gene list from the comparison,
use NA if not required extension .tsv is for tab separated
files that load conveniently into MS Excel.
Contrast.Outfile: twochannel comp.tsv
ANOVA table and variance component output file
ANOVA.Outfile: twochannel aov.txt
The following entry allows to write the normalized log ratios to an output file.
NA is for none. The string is actually only the base file name with various
endings that accommodate the various bits of information.
DataOutFnam: twochannel data norm

3.2.3 Allocating files to levels

The next step in preparing analysis is to allocate an input file to every combination of levels. This
excludes on slide replicates, which are found and allocated automatically when the data is loaded. The
relevant section of the definition file is found under “file.alloc:”. Each line starts with a file name, lists
the exhaustive combination of levels the file is allocated to and finally indicates, whether the slide is a
dye swap indicator. Note that this information is always necessary, even for single channel experiments,
since this single column can as well be a log ratio information with dye swaps.

00
file.alloc:
reminder - the last effect is always replicate on slides and is thus *not* allocated
to a particular file. (Replicates are assigned by data loading).
file name: time sample dye swap?
adult generation
R35 NIA1 AWX ad 612 Fl output.tsv 1 1 F
R35 NIA1 AWX ad 613 Fl output.tsv 1 2 F
R35 NIA1 AWX ad 629b Fl output.tsv 1 3 F
R35 NIA1 AWX ad 630 Fl output.tsv 1 4 F
day one
R25 NIA1 AWX d01 s16 Fl output.tsv 2 1 F
R25 NIA1 AWX d01 s17 Fl output.tsv 2 2 F
R25 NIA1 AWX d01 s18 Fl output.tsv 2 3 F
R25 NIA1 AWX d01 s21 Fl output.tsv 2 4 F
day 5
R25 NIA1 AWX d05 s13 Fl output.tsv 3 1 F
R35 NIA1 AWX d05 545 Fl output.tsv 3 2 F
R35 NIA1 AWX d05 546 Fl output.tsv 3 3 F
R35 NIA1 AWX d05 547 Fl output.tsv 3 4 F
day 10
R25 NIA1 AWX d10 s28 Fl output.tsv 4 1 F
R35 NIA1 AWX d10 596 Fl output.tsv 4 2 F
R35 NIA1 AWX d10 597 Fl output.tsv 4 3 F
R35 NIA1 AWX d10 600 Fl output.tsv 4 4 F
day 15
R35 NIA1 AWX d15 594 Fl output.tsv 5 1 F
R35 NIA1 AWX d15 605 Fl output.tsv 5 2 F

5

R35 NIA1 AWX d15 671 Fl output.tsv 5 3 F
R35 NIA1 AWX d15 674 Fl output.tsv 5 4 F
day 23
R35 NIA1 AWX d23 653 Fl output.tsv 6 1 F
R35 NIA1 AWX d23 654 Fl output.tsv 6 2 F
R35 NIA1 AWX d23 655b Fl output.tsv 6 3 F
R35 NIA1 AWX d23 670 Fl output.tsv 6 4 F
day 35
R35 NIA1 AWX d35 631 Fl output.tsv 7 1 F
R35 NIA1 AWX d35 632 Fl output.tsv 7 2 F
R35 NIA1 AWX d35 633 Fl output.tsv 7 3 F
R35 NIA1 AWX d35 651 Fl output.tsv 7 4 F

3.2.4 Assigning RG columns

The next step in the experiment description is to assign column headers of the input file to the corre-
sponding RG columns. The minimal setting for two channel arrays is to assign the gene id column, the
R and the G channel. As is illustrated below for the R-background signal, unused columns are identified
by using “NA” as specification.

00
gene column name in the header
gene.colnam: NAME
Cy5 spot column name in the header
R.colnam: AMPCH1
Cy5 background column name in the header (NA if none)
Rb.colnam: NA
Cy3 spot column name in the header (NA if none) - for single channel experiments
G.colnam: AMPCH2

3.2.5 Gene list

To allow exclusion of non genomic information like sub grid markers and to cope with situations where
different genes appear on slides in different numbers, one has to provide an exhaustive list of all gene
identifiers that should go into analysis.

00
Finally a list of all gene names (as found in gene.colnam in the data)
which should go into the experiment. This is necessary to allow for
experiment designs where people use different numbers of replicates
on slide and to get rid of all unwanted entries like marker spots etc.
genes.list:
H3078A06
H3078C06
H3078E06
H3078G06
H3078A12
H3078C12
H3078E12
H3078G12
Ctl141002 01 A12
Ctl141002 01 E12
Ctl141002 01 I12
Ctl141002 01 M12
Ctl141002 01 A24
Ctl141002 01 E24
Ctl141002 01 I24
Ctl141002 01 M24
H3066C12

6

H3066E1
... and more

3.2.6 Normalisation

Normalisation is here done with classical methods. Since we also want to allow log transformed data,
we use in this situation a slightly modified functionality of the underlying YASMA package. Note that
FSPMA also allows spike based normalisation. Since we are at present not in the position to provide
any data that have spikes on the array, we refer to explanations in [2] and to the online help for more
information.

00
normalization control NA if none, otherwise loess,
location or scale combinations like loess scale or
location scale are allowed as well. For loess scale the order matters!
Normalization: location scale

4 Single channel and preprocessed data

4.1 Single channel analysis

Analysis of single channel data follows exactly the same lines as were described above. The example
provided here was generated from the same two channel data. At the R command line, we just type:

> library(fspma)

> ret <- fspma.wrapper("onechannel_affytype.def")

Run started on - Thu Jun 16 2005 13:00:49

Loading info from file.
Checking consistency of the definition file onechannel_affytype.def was successful.
Loading RG data.
Reading File: sig_t1_s1.txt
Reading File: sig_t1_s2.txt
Reading File: sig_t1_s3.txt
Reading File: sig_t1_s4.txt
Reading File: sig_t2_s1.txt
Reading File: sig_t2_s2.txt
Reading File: sig_t2_s3.txt
Reading File: sig_t2_s4.txt
Reading File: sig_t3_s1.txt
Reading File: sig_t3_s2.txt
Reading File: sig_t3_s3.txt
Reading File: sig_t3_s4.txt
Reading File: sig_t4_s1.txt
Reading File: sig_t4_s2.txt
Reading File: sig_t4_s3.txt
Reading File: sig_t4_s4.txt
Reading File: sig_t5_s1.txt
Reading File: sig_t5_s2.txt
Reading File: sig_t5_s3.txt
Reading File: sig_t5_s4.txt
Reading File: sig_t6_s1.txt
Reading File: sig_t6_s2.txt
Reading File: sig_t6_s3.txt
Reading File: sig_t6_s4.txt
Reading File: sig_t7_s1.txt
Reading File: sig_t7_s2.txt

7

Reading File: sig_t7_s3.txt
Reading File: sig_t7_s4.txt
Number of NA entries from channel: 0.
Number of NA entries from flag: 0
Number of NA entries after imputing: 0
Getting model.info
Do classical normalization.
Normalising by: location
Normalising by: scale
Write raw data to files.
Convert RG data to log ratios.
Calculating ANOVA and write table and variance components.
...Getting number of comparisons
Ranking by Variety.
ANOVA ranking.
Contrast based ranking
base: 1 - shortcut for several contrasts, be patient!
contrast: -0.333333333333333,0.25,0.25,0.25,0.25,-0.333333333333333,-0.333333333333333
Processing completed.

Apart from having used different output file names, to allow that the analysis results do not interfere
with the other experiments, we have to adjust the channel name specification, where we chose the naming
convention normally found in Affymetrix data. This definition file thus differs from the previous one, in
that we have different channel names and file names, we allocate to the level combinations.

00
gene column name in the header
gene.colnam: Probe Set Name
Cy5 spot column name in the header
R.colnam: Signal
Cy5 background column name in the header (NA if none)
Rb.colnam: NA
Cy3 spot column name in the header (NA if none) - for single channel experiments
G.colnam: NA
reminder - the last effect is always replicate on slides and is thus *not* allocated
to a particular file. (Replicates are assigned by data loading).
file name: time sample dye swap?
adult generation
sig t1 s1.txt 1 1 F
sig t1 s2.txt 1 2 F
sig t1 s3.txt 1 3 F
sig t1 s4.txt 1 4 F
day one
sig t2 s1.txt 2 1 F
sig t2 s2.txt 2 2 F
sig t2 s3.txt 2 3 F
sig t2 s4.txt 2 4 F
day 5
sig t3 s1.txt 3 1 F
sig t3 s2.txt 3 2 F
sig t3 s3.txt 3 3 F
sig t3 s4.txt 3 4 F
day 10
sig t4 s1.txt 4 1 F
sig t4 s2.txt 4 2 F
sig t4 s3.txt 4 3 F
sig t4 s4.txt 4 4 F
day 15
sig t5 s1.txt 5 1 F

8

sig t5 s2.txt 5 2 F
sig t5 s3.txt 5 3 F
sig t5 s4.txt 5 4 F
day 23
sig t6 s1.txt 6 1 F
sig t6 s2.txt 6 2 F
sig t6 s3.txt 6 3 F
sig t6 s4.txt 6 4 F
day 35
sig t7 s1.txt 7 1 F
sig t7 s2.txt 7 2 F
sig t7 s3.txt 7 3 F
sig t7 s4.txt 7 4 F

As the name suggests, this definition file is similar to a definition file we would specify for an Affymetrix
type analysis. The main difference is that the number of replicates in Affy-data is 1, whereas in this
artificially generated single channel data, we have 2.

4.2 Preprocessed data

The first example we provide here assumes that data is available as single channel log ratios (or log
expressions, which is indifferent). We do though not assume that this data is normalized. FSPMA again
just requires to specify an appropriately set up definition file.

> library(fspma)

> ret <- fspma.wrapper("onechannel_logdata.def")

Run started on - Thu Jun 16 2005 13:01:14

Loading info from file.
Checking consistency of the definition file onechannel_logdata.def was successful.
Loading RG data.
Reading File: siglg_t1_s1.txt
Reading File: siglg_t1_s2.txt
Reading File: siglg_t1_s3.txt
Reading File: siglg_t1_s4.txt
Reading File: siglg_t2_s1.txt
Reading File: siglg_t2_s2.txt
Reading File: siglg_t2_s3.txt
Reading File: siglg_t2_s4.txt
Reading File: siglg_t3_s1.txt
Reading File: siglg_t3_s2.txt
Reading File: siglg_t3_s3.txt
Reading File: siglg_t3_s4.txt
Reading File: siglg_t4_s1.txt
Reading File: siglg_t4_s2.txt
Reading File: siglg_t4_s3.txt
Reading File: siglg_t4_s4.txt
Reading File: siglg_t5_s1.txt
Reading File: siglg_t5_s2.txt
Reading File: siglg_t5_s3.txt
Reading File: siglg_t5_s4.txt
Reading File: siglg_t6_s1.txt
Reading File: siglg_t6_s2.txt
Reading File: siglg_t6_s3.txt
Reading File: siglg_t6_s4.txt
Reading File: siglg_t7_s1.txt
Reading File: siglg_t7_s2.txt
Reading File: siglg_t7_s3.txt

9

Reading File: siglg_t7_s4.txt
Number of NA entries from channel: 0.
Number of NA entries from flag: 0
Number of NA entries after imputing: 0
Getting model.info
Do classical normalization.
Normalising by: location
Normalising by: scale
Write raw data to files.
Convert RG *log data* to log ratios (no log taken).
Calculating ANOVA and write table and variance components.
...Getting number of comparisons
Ranking by Variety.
ANOVA ranking.
Contrast based ranking
base: 1 - shortcut for several contrasts, be patient!
Processing completed.

The main difference to the previous example is that we need to indicate that expression values are already
on a log scale. We thus do not move the data to the log scale.

00 0000000000000000
control conversion RG -> array (T -> take log, F -> convert as is)
this data is on log scale (however not normalized)
DoRG2logarray: F

Our next analysis of preprocessed data assumes that the data are already on a normalized log ratio scale.
We thus do not move the data onto log ratio scale and specify that normalisation is not intended. The
analysis is again done by using an appropriately set up definition file.

> library(fspma)

> ret <- fspma.wrapper("onechannel_lognorm.def")

Run started on - Thu Jun 16 2005 13:01:38

Loading info from file.
Checking consistency of the definition file onechannel_lognorm.def was successful.
Loading RG data.
Reading File: nrmlg_t1_s1.txt
Reading File: nrmlg_t1_s2.txt
Reading File: nrmlg_t1_s3.txt
Reading File: nrmlg_t1_s4.txt
Reading File: nrmlg_t2_s1.txt
Reading File: nrmlg_t2_s2.txt
Reading File: nrmlg_t2_s3.txt
Reading File: nrmlg_t2_s4.txt
Reading File: nrmlg_t3_s1.txt
Reading File: nrmlg_t3_s2.txt
Reading File: nrmlg_t3_s3.txt
Reading File: nrmlg_t3_s4.txt
Reading File: nrmlg_t4_s1.txt
Reading File: nrmlg_t4_s2.txt
Reading File: nrmlg_t4_s3.txt
Reading File: nrmlg_t4_s4.txt
Reading File: nrmlg_t5_s1.txt
Reading File: nrmlg_t5_s2.txt
Reading File: nrmlg_t5_s3.txt
Reading File: nrmlg_t5_s4.txt
Reading File: nrmlg_t6_s1.txt

10

Reading File: nrmlg_t6_s2.txt
Reading File: nrmlg_t6_s3.txt
Reading File: nrmlg_t6_s4.txt
Reading File: nrmlg_t7_s1.txt
Reading File: nrmlg_t7_s2.txt
Reading File: nrmlg_t7_s3.txt
Reading File: nrmlg_t7_s4.txt
Number of NA entries from channel: 0.
Number of NA entries from flag: 0
Number of NA entries after imputing: 0
Getting model.info
No normalization (data taken as is).
Write raw data to files.
Convert RG *log data* to log ratios (no log taken).
Calculating ANOVA and write table and variance components.
...Getting number of comparisons
Ranking by Variety.
ANOVA ranking.
Contrast based ranking
base: 1 - shortcut for several contrasts, be patient!
contrast: -0.333333333333333,0.25,0.25,0.25,0.25,-0.333333333333333,-0.333333333333333
Processing completed.

This definition file again uses different input and output file names, to allow that the analysis results do
not interfere with other experiments. Since here normalisation was done before the data gets handed over
to FSPMA, we do not normalise the data here. The main difference to the previous example is thus:

00 0000000000000000
here: no normalization since that was done before.
Normalization: NA

5 Additional functionality of FSPMA

The main reasoning behind FSPMA is to provide an easy to use interface to loading data, normalization,
data cleaning (i.e. remove or impute bad quality flagged expression values) and inference. There is
however an additional aspect, one should consider during analysis. It is strictly recommended, to look at
the data before relying on the result. For that purpouse FSPMA provides three different graphical views.
Before we explore these, we need to generate a FSPMA object.

> library(fspma)

> ret <- fspma.wrapper("twochannel.def")

Run started on - Thu Jun 16 2005 13:02:03

Loading info from file.
Checking consistency of the definition file twochannel.def was successful.
Loading RG data.
Reading File: R35_NIA1_AWX_ad_612_Fl_output.tsv
Reading File: R35_NIA1_AWX_ad_613_Fl_output.tsv
Reading File: R35_NIA1_AWX_ad_629b_Fl_output.tsv
Reading File: R35_NIA1_AWX_ad_630_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s16_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s17_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s18_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s21_Fl_output.tsv
Reading File: R25_NIA1_AWX_d05_s13_Fl_output.tsv
Reading File: R35_NIA1_AWX_d05_545_Fl_output.tsv
Reading File: R35_NIA1_AWX_d05_546_Fl_output.tsv

11

Reading File: R35_NIA1_AWX_d05_547_Fl_output.tsv
Reading File: R25_NIA1_AWX_d10_s28_Fl_output.tsv
Reading File: R35_NIA1_AWX_d10_596_Fl_output.tsv
Reading File: R35_NIA1_AWX_d10_597_Fl_output.tsv
Reading File: R35_NIA1_AWX_d10_600_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_594_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_605_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_671_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_674_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_653_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_654_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_655b_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_670_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_631_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_632_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_633_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_651_Fl_output.tsv
Number of NA entries from channel: 0.
Number of NA entries from flag: 0
Number of NA entries after imputing: 0
Getting model.info
Do classical normalization.
Normalising by: location
Normalising by: scale
Write raw data to files.
Convert RG data to log ratios.
Calculating ANOVA and write table and variance components.
...Getting number of comparisons
Ranking by Variety.
ANOVA ranking.
Contrast based ranking
base: 1 - shortcut for several contrasts, be patient!
contrast: -0.333333333333333,0.25,0.25,0.25,0.25,-0.333333333333333,-0.333333333333333
Processing completed.

5.1 Log ratio over log amplitude plots (M/A) plots

We can now use the FSPMA object to produce a scatter plot in log amplitude log ratio space of a
randomly selected subset of genes on any one slide. This “M/A” representation is only useful for two
channel input (since for single channel data M and A are identical).

> fspma.maplot(ret, slideno = 1)

12

10 15 20 25

−
2

0
2

4
6

M−A Plot

Log Amplitude

Lo
g

R
at

io

Function fspma.maplot can be configured further. We may include spike genes if such are available
or modify the plot title. Specifying a filename allows to write the output to an “eps” file (encapsulated
postscript). These files can be used to illustrate documents. Details about other options in fspma.maplot
can be found in the online help of the library.

5.2 Plotting average log ratios of top ranked genes

To inspect the average log ratios (or log expressions), we may use fspma.rankplot to obtain a plot of log
ratios over rank effects for the n-top ranked genes. This representation can be used for all data sources.
We need to provide two parameters: a FSPMA object as returned by fspma.wrapper and the name of
the list of interest. The names are identical to the first part of the rank file names constructed by the
library. They can at any time be obtained by inspecting the names of the various rank lists. Sometimes
it will be necessary to adjust the position of the legend within a plot. We move it here to the bottom left
corner to avoid overlap with the graph.

> listnams <- names(ret$plt.tabs)

> cat(listnams[c(1:4)], sep = ", ")

test.day.1.bladult, test.day.5.bladult, test.day.10.bladult, test.day.15.bladult

> fspma.rankplot(ret, listnams[2], leg.pos = "bottomleft")

13

0 1 2 3 4 5 6 7

−
6

−
4

−
2

0
2

Rank List

time point

lo
g

ra
tio

H3078G12
H3078A06
Ctl141002_01_E24
H3075A12
Ctl141002_01_M24

Again there are more options available. Details are found in the online help.

5.3 Scatter plots of average channel intensities and log ratio differences

To allow these scatter plots we first need to convert the FSPMA object (returned by fspma.wrapper)
to an average channel object. Note that the example below is the most simple call to this. One has
in addition the advantage to use contrast to get average log channel differences. (see the online help of
FSPMA).

> fspma.av <- fspma.avchannel(ret)

This object can be written into a tab delimited file (the file name is optional to override the default).

> fspma.av.RG2file(fspma.av, filename = "twochannel.RG.av.tsv")

The fspma.av object can now be used to produce scatter plots of average channel intensities and illustrate
those for a specified number of top up-, down regulated and a randomly selected “other” genes. This
representation is only useful for two channel data since the “G” values are all zero for single channel RG
input. The decision about which level is illustrated is made by providing the corresponding rank name
(i.e. the identifications we provided in the def file for all levels in the rank effect). They are stored in
ret$info$rank.names and can, as is illustrated below, be found at the R command line at any time.
This call to fspma.av.scattp overrides the default amd places the legend to the top left corner.

> rank.names <- ret$info$rank.names

> cat(rank.names, sep = ", ")

adult, day.1, day.5, day.10, day.15, day.23, day.35

> fspma.av.scattp(fspma.av, "day.1", leg.pos = "topleft")

14

4 6 8 10 12 14

4
6

8
10

12
14

Scatter Plot Average Expression

Average log channel value in G

A
ve

ra
ge

 lo
g

ch
an

ne
l v

al
ue

 in
 R

H3058G06
H3054A12
H3071E12
H3062E12
H3046A12
Ctl141002_01_B12
Ctl141002_01_A12
H3075A12
H3078A06
H3078G12

Function fspma.avchannel also allows to specify a contrast. In that case we get a plot of log R
differences over log G differences. We illustrate this here by plotting the average channel differences of
day 1 to day 15 minus day 23 to adult (see also a similar contrast in “twochannel.def”). For plotting these
average log channel values, we need to specify the state name ’diff’ (which is the default in this case).
Note that this is also an example how we may customise default settings in the plot function. Here we
remove the lines that indicate log two fold up and down regulation and put the legend in the top left
corner.

> fspma.logRGd <- fspma.avchannel(ret, contrast = c(-1, 1, 1, 1,

+ 1, -1, -1))

> fspma.av.scattp(fspma.logRGd, "diff", lg.diff = NULL, leg.pos = "topleft")

15

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Scatter Plot Average Expression

Average log channel value in G

A
ve

ra
ge

 lo
g

ch
an

ne
l v

al
ue

 in
 R

Ctl141002_01_E24
Ctl141002_01_M24
Ctl141002_01_M12
H3002E12
H3074F01
H3014C12
H3079C06
H3075A12
H3078A06
H3078G12

The final option with these functions is to obtain a representation of average log ratio differences be-
tween two effects. This representation is again useful for all data sources (i.e. plot log2(R[n]/G[n]) over
log2(R[m]/G[m]) for (m,n) being two levels in the rank effect). This is done on the original output of
fspma.avchannel and requires to specify two state names in the call to fspma.av.scattp. Again we
customise the plot by providing a different title, x and y labels and remove the lines that bound log two
fold up and down regulation.

> fspma.av.scattp(fspma.av, c("adult", "day.1"), pl.title = "Average log ratios day 1 over adult",

+ x.leg = "Average log ratios adult", y.leg = "Average log ratios day 1",

+ lg.diff = NULL)

16

−2 −1 0 1 2 3

−
4

−
2

0
2

Average log ratios day 1 over adult

Average log ratios adult

A
ve

ra
ge

 lo
g

ra
tio

s
da

y
1

Ctl141002_01_M12
H3054A12
H3062E12
H3058C12
Ctl141002_01_E12
H3070G12
H3075A12
H3058A12
H3078A06
H3078G12

Further options to fspma.av.scattp can be found in the online help of the library.

6 Combining FSPMA with other libraries

To allow combining FSPMA with other microarray libraries, we provide two functions that can be used
to extract a compatible “RG” object from a FSPMA object and to merge a compatible “RG” object with
a FSPMA object. This is done by functions fspmaRG.2.RG and RG.2.fspmaRG. The next example
illustrates this with a new definition file, that was derived from “twochannel.def”. For this analysis we
specify that fspma.wrapper should terminate after having read the data and that we intend to impute
missing values with the k nearest neighbour approach suggested in [3]. We thus change the definition file
to:

00 0000000000000000
here: set load only flag - fspma.wrapper returns after having read the definition file and data.
Load.Only: T
How do we impute: (NA for none, knn <TAB> k for knn using k neighbours
and del for removing such genes)
Impute.Mthd: knn 5

Then we can take control over the experimental data, before it gets analysed by the library.

> library(fspma)

> ret <- fspma.wrapper("loadonly.def")

Run started on - Thu Jun 16 2005 13:02:31

Loading info from file.
Checking consistency of the definition file loadonly.def was successful.

17

Loading RG data.
Reading File: R35_NIA1_AWX_ad_612_Fl_output.tsv
Reading File: R35_NIA1_AWX_ad_613_Fl_output.tsv
Reading File: R35_NIA1_AWX_ad_629b_Fl_output.tsv
Reading File: R35_NIA1_AWX_ad_630_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s16_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s17_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s18_Fl_output.tsv
Reading File: R25_NIA1_AWX_d01_s21_Fl_output.tsv
Reading File: R25_NIA1_AWX_d05_s13_Fl_output.tsv
Reading File: R35_NIA1_AWX_d05_545_Fl_output.tsv
Reading File: R35_NIA1_AWX_d05_546_Fl_output.tsv
Reading File: R35_NIA1_AWX_d05_547_Fl_output.tsv
Reading File: R25_NIA1_AWX_d10_s28_Fl_output.tsv
Reading File: R35_NIA1_AWX_d10_596_Fl_output.tsv
Reading File: R35_NIA1_AWX_d10_597_Fl_output.tsv
Reading File: R35_NIA1_AWX_d10_600_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_594_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_605_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_671_Fl_output.tsv
Reading File: R35_NIA1_AWX_d15_674_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_653_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_654_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_655b_Fl_output.tsv
Reading File: R35_NIA1_AWX_d23_670_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_631_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_632_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_633_Fl_output.tsv
Reading File: R35_NIA1_AWX_d35_651_Fl_output.tsv
Number of NA entries from channel: 0.
Processing completed.

To use the data loaded by fspma.wrapper with functions that know about RG objects, we first have to
extract a compatible RG object.

> RG <- fspmaRG.2.RG(ret)

This allows to use functions that operate on RG objects. The example here uses YASMA to obtain a
correlation plot over experiments in dependency of removed genes.

> rg.rsq.plot(RG)

18

+

+ + + + +

+

+ +
+

+
+

+

+

+
+

+

+

+

+

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
45

0.
50

0.
55

fraction

R
^2

We deduce from this plot that it might be a good idea to remove 5% of low correlated spots. In fact we
mark those as NA, and later use FSPMA to deal with this.

> RG <- rg.remove.quantile(RG, 0.05, level = 10, set.na = T)

This modified RG gets now merged with the FSPMA object.

> ret1 <- RG.2.fspmaRG(RG, ret)

Gene names mismatch in fspmaobj resolved.

and we finally continue analysis within fspma.wrapper, however at this time providing data at the
command line. Note that this analysis will take some time. This is due to the k nearest neighbour
imputation, we specified above. For full gene sets, we have to expect several hours of runtime!

> ret2 <- fspma.wrapper(RG = ret1$RG, info = ret1$info)

Run started on - Thu Jun 16 2005 13:03:21

RG provided data not loaded.
Number of NA entries from channel: 157, see na_debug.tsv for more information.
Number of NA entries from flag: 157

..

..

..

..

..

19

..

..

..

..

..
Number of NA entries after imputing: 0
Getting model.info
Do classical normalization.
Normalising by: location
Normalising by: scale
Write raw data to files.
Convert RG data to log ratios.
Calculating ANOVA and write table and variance components.
...Getting number of comparisons
Ranking by Variety.
ANOVA ranking.
Contrast based ranking
base: 1 - shortcut for several contrasts, be patient!
contrast: -0.333333333333333,0.25,0.25,0.25,0.25,-0.333333333333333,-0.333333333333333
Processing completed.

7 Next Steps

For more information about definition files it is suggested to study and possibly modify those that come
with the library. We also refer to the online help of FSPMA, which provides more insight into all
functions, we used here. The online help also discusses functions of FSPMA that are used internally in
fspma.wrapper. There is also extensive information about how to set up different definition files. In
that context we would also like to point to the reference of FSPMA that can be downloaded from our
web page at http://www.ccbi.cam.ac.uk/SOFTWARE/psyk/fspma.html#sykacek_TR051.

Acknowledgements

This work was funded by the BBSRC’s Exploiting Genomics initiative under ref. 8/EGH16106, ”Shared
Genetic Pathways in Cell Number Control”.

References

[1] F. Leisch. Sweave: Dynamic generation of statistical reports using literate data analysis. In W. Härdle
and B. Ränz, editors, Compstat 2002 Ů Proceedings in Computational Statistics, pages 575–580,
Heidelberg, Germany, 2002. Physika Verlag. URL [http://www.ci.tuwien.ac.at/ leisch/Sweave].

[2] P. Sykacek, R. Furlong, and G. Micklem. A Friendly Statistics Package for Microarray Analysis.
Technical report, Departments of Pathology & Genetics, University of Cambridge, 2005. [Available
at http://www.sykacek.net/pubs.html#sykacek_etal_TR051].

[3] G. O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and
R. B. Altman. Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6):520–525,
2001.

[4] L. Wernisch, S. L. Kendall, S. Soneji, A. Wietzorrek, T. Parish, J. Hinds, P. G. Butcher, and N. G.
Stoker. Analysis of whole-genome microarray replicates using mixed models. Bioinformatics, 19(1):53–
61, 2003.

20

