
aov.tab.varcomp.2.file

Calculate ANOVA table and variance components and write them
into a file.

Description

Function aov.tab.varcomp.2.file takes a YASMA bfaov object and the fspma’s info structure
and writes an ANOVA table and the variance components into a file.

Usage

aov.tab.varcomp.2.file(av, info, model.info, file=NULL)

Arguments

av YASMA’s bfaov object

info fspma’s info structure

model.info fspma’s model.info structure

file optional file name, if NULL the file name is taken from info$aovfname

Value

The function aov.tab.varcomp.2.file takes the bfaov object and some control information
from info and model.info to generate the ANOVA table and calculate and write the variance
components to a file. The file name in info$aovfname is obtained from the ’ANOVA.Outfile:’
entry in the definition file. The function has no return object.

See Also

tabdel2rg, do.normalize, do.anova, aov.tab.varcomp.2.file and contrast.rank.2.file

Examples

Not run:

read definition file

info <- read.defs('deffile.def')
extract model.info from the info structure

model.info <- info.2.yasmaeqns(info)

read data

RG <- tabdel2rg(info)

and normalize it

RG <- do.normalize(RG, info)

convert to array structure

aov.a <- rg2log.array(RG, log.ratio=T)

and call do.anova

av <- do.anova(model.info, aov.a)

write the ANOVA and reml variance table according to info

1

aov.tab.varcomp.2.file(av, info, mode.info)

End(Not run)

contrast.rank.2.file Calculate contrast based within ANOVA rankings and write re-
sulting gene lists to tab delimited files.

Description

Function contrast.rank.2.file takes a YASMA bfaov object, YASMA’s RG structure, fspma’s
info and model.info structures, calculates the rank lists and writes all information (including
the within group sample means) into a results file.

Usage

contrast.rank.2.file(av, RG, model.info, info, p.type, p.thrs,
n.comps, log.fname = fspma.logfile)

Arguments

av YASMA’s bfaov object.

RG YASMA’s RG structure.

model.info fspma’s model.info structure.

info fspma’s info structure.

p.type P-value adjustment (defult from info)

p.thrs Threshold of p-value or top rank counter

n.comps Overall number of comparisons (calculated by fspma.wrapper)

log.fname Name of log file used to dump progress report

Value

contrast.rank.2.file writes rank tables to tab delimited files and returns a list of all rank
tables to the calling function. Note that the returned object is not meant to be manipulated
at user level.

File structure

The function contrast.rank.2.file takes the bfaov object and some control information to
generate contrast based rank tables within the ANOVA. Each comparison is written in its
own tab delimited file. The files contains the index of the gene in the gene list, the gene
name, an adjusted p-value, a boolean indicator of upregulation and sample means in each
level of th erank effect. Upregulation is decided based on the sign of the comparison. If it
specifies a base level, upregulation indicates a significantly larger (differential) expression
in the second level of the comparison. In case of a contrast, upregulation indicates that
the average differential expression at the levels that have positive weight is higher than the
average differential expression at the levels that have negative weight (see also the example

2

below).

The function is controlled by info$contrast, info$p.type and info$p.thrs. The file name
base is specified as info$ctrfname, it represents the file name in the ’Contrast.Outfile:’ line
in the definition file. The component info$contrast is obtained from the ’Base.Contrast:’
entry in the definition file. The name part of the contrast entry (first string after tabulator)
is concattenated to the file base name to make a unique augmented file base.

Base Levels - Multiple Pairwise Comparisons

There are two different ways to specify a contrast: First one can provide an index of a base
level of the rank effect. This base level is compared to all other levels of the effect (e.g. for
comparing adult against all other generations in a time course). In this case there is one
ranking obtained for every level in the rank effect that differs from the base level. Each
ranking is stored in a separate file that starts with ”test.” followed by the level name and
the augmented file base to give a unique file name. Ranking is based on the corresponding
p-values that are adjusted based on the overall number of comarisons suggested by the
definition file, which is vital to get less false positives.

Contrasts

The other option requires as many entries as there are levels to specify a contrast directly. If
the contrasts do not sum to zero, positive and negative contrasts are normalized separately.
In a mammary gland study with entries ’day 0 lactation’, ’day 5 lactation’, ’day 10 lactation’,
’12 hrs involution’, ’24 hrs involution’, ’72 hrs involution’ and ’96 hrs involution’ we can thus
use the contrast -1<TAB>-1<TAB>-1<TAB>-1<TAB>1<TAB>1<TAB>1 to specify a
contrast that ranks w.r.t. a type 2 apoptosis event. (The values are normalized to -1/4 and
1/3 respectively and upregulation ”TRUE” would denote those genes that are upregulated
at late involution time points). The file name is generated by the contrast name that is
concatenated with the file base specified as ’Contrast.Outfile:’.

Controling Significance

The component info$p.type is obtained from the ’Comp.Type:’ entry that can specify var-
ious adjustments (see p.adjust in R or deffile.def for help). The number of comparisons
to be done within one analysis run (i.e. specified within a definition file) is used as counts
to adjust the p-values.

The component info$p.thrs is obtained from the ’Comp.Thrs:’ entry that either specifies a
p-value threshold or if it is an integer number a count of how many of the most significant
genes should be written into the file.

See Also

tabdel2rg, do.normalize, do.anova, deffile.def and aov.tab.varcomp.2.file

Examples

Not run:

read definition file

info <- read.defs('deffile.def')

3

extract model.info from the info structure

model.info <- info.2.yasmaeqns(info)

read data

RG <- tabdel2rg(info)

normalize it

RG <- do.normalize(RG, info)

convert to array structure

aov.a <- rg2log.array(RG, log.ratio=T)

call do.anova

av <- do.anova(model.info, aov.a)

and calculate and write within ANOVA rank tables.

contrast.rank.2.file(av, RG, model.info, info, n.comps=[plug in here!])

End(Not run)

deffile.def Example definition file for fspma.wrapper

Description

Definition file that controls the execution of the fspma scripts.

Usage

deffile.def

Format

deffile.def is a file name that refers to a tab delimited definition file which controls all aspects
of evaluating a miroarray experiment. It is used as parameter to fspma.wrapper(deffile),
see fspma.wrapper.

Details

The tags at the beginning of each line identify the information fspma uses to control the
analysis of a microarray experiment. It is of vital importance that they are typed exactly,
since they are searched for. Lines starting with # are regarded as comments. All different
specifiers within a line (e.g. the numbers of instances for each effect in the ’Effects:’ row)
must be separated by Tabulators. Avoid at every cost extra (trailing!) white spaces (blanks,
tabulators, etc.), because these will lead to completely undesired behaviour! The following
provides an example definition file. For a detailed discussions of various options refer to
the man pages of individual functions. Also refer to the examples provided with the library
and the online example at http://www.ccbi.cam.ac.uk/software/psyk/software.html#
fspma that can be used in connection with a dataset that is available online.

See Also

do.normalize and spike.normalize for further discussion of available normalization op-
tions, contrast.rank.2.file for an explanation of all possibilities with the contrast en-
tries, specify.experiments for how to specify different experiments and fspma.wrapper
on how to get the analysis started.

4

http://www.ccbi.cam.ac.uk/software/psyk/software.html#fspma�
http://www.ccbi.cam.ac.uk/software/psyk/software.html#fspma�

Examples

Not run:

Definition file for ANOVA analysis of an experiment.

This file is the interface of any experiment that can be analysed

by YASMA. It is read by an r-script that loads data and prepares all

what is needed afterwards during the analysis.

#

(C) P. Sykacek 2004.

#

Version information: This will be counted up if changes are made to

the structure of the definition file, to be able to parse old files as

well. Note that the description of old files is no longer available,

as soon as this gets updated. (i.e. version 1 is obsolete by now)

Ver: 2

#

ExpName: Mouse Testis

#

All effects that appear in the experiment. The last is the

minimum number of replicates per slide and must be specified.

Effects: 7 4 2

#

Experiment is Unbalanced: (Otherwise an error is raised if the

experiment is unbalanced!) Unbalanced experiments can be loade and

normalized. An ANOVA analysis however is not possible.

Is.Unbalanced: F

#

Effect Names: (compatible with R variable names, no blanks and underscore)

Eff.Nams: time sample rep

#

which are random effects

RandEffs: F T T

#

Which effect should be ranked over?

Rank.Eff: 1

#

Names of each ranking dimension that need to be compatible with R variable

names. Hence no blanks and underscores.

Rank.Names: adult day.1 day.5 day.10 day.15 day.23 day.35

#

The following line either specifies a contrast or a base level to be used for

ranking within the ANOVA model.

There are 3 possibilities: specify a contrast; specify a base level

of the rank effect that all other levels should be compared against;

specify ANOVA based ranking, where the p-value of each time course (or the

respective type) is evaluated with an ANOVA model.

Novel: since we allow for multiple comparisons in one file we add

a name for each contrast that enters the file name.

Example for a contrast comparing day 15 versus adult

Base.Contrast: ctadd15 -1 0 0 0 1 0 0

Example for general ranking against adult (takes most significant p-value

for each gene)

Base.Contrast: blad 1

5

If there is only one level in the rank effect the previous line ranks

based on significant differential expression between the two channels.

Example for ANOVA based ranking:

Base.Contrast: ANOVA

Example for VARIETY based ranking. Only for two channel arrays

where this compares the average log ratios against each other:

Base.Contrast: VARIETY

Several Base.Contrast: entries are possible. They will all be analysed

together with p-values adjusted accordingly.

The following example specifies two base levels and does hence 12

pairwise comparisons for every gene. This is one replicated, which

will lead to a conservative p-value adjustment. This can be avoided by

using one base level and specify the remaining 5 pairwise comparisons

by conventional contratsts.

Base.Contrast: blad 1

Base.Contrast: bld01 2

Output file to write the gene list from the comparison,

use NA if not required

Contrast.Outfile: testis_gen_comp.tsv

Type of p-value adjustment: holm, hochberg, hommel, bonferroni, fdr,

none (from R{stats} p.adjust)

Comp.Type: bonferroni

p-value threshold or integer number interpreted as top-ranked count.

Comp.Thrs: 0.05

ANOVA table and variance component output file

ANOVA.Outfile: mouse_testis_aov.txt

#

Normalization control; NA if none otherwise loess,

location or scale combinations like loess scale or

location scale are allowed as well. For loess scale the order matters!

This is an interface to YASMA's functionality.

loess with optional span and degree (0.25< span <=1 and degree 1 or 2)

default is 0.9 for the span and 1 for the degree.

Normalization: loess [[<degree>]]

IMPORTANT: Without spike genes, loess is invalid for single channel arrays!

Normalization: localtion

Normalization: location scale

Normalization: loess scale

Version 2 allows spike based normalization which is initialised using

the modifier spike. e.g.

Normalization: spike location

In addition to location and scale more elaborate versions based on

grid position and amplitude are possible. The latter fits a loess fit

to the spikes residuals and subtracts that from all other gene values.

(which depending on the data, are either log ratios or log expressions).

possible values are spatial and amplitude e.g.

Normalization: spike spatial amplitude

Spike normalization can be modified by grid and scale and by two

numerical values which are taken as loess span and degree. Modifier grid

uses grid numbers as factors in the loess model equation and allows to

remove pin effects. Spike based normalization requires a list of

spikes and expected expressions to be provided after spike.list: (see below)

The following is a possible setting for spike based normalization.

6

It uses a loess fit with spatial position (spatial effects) and

amplitude (spot intensity) as continuous regressors and the grid

index (pin effects) as factorial regressor. The optional span and

degree of the loess fit are here set to 0.95 and 1 respectively.

After calculating the overall scale, each slide is

transformed to that scale.

Normalization: spike 0.95 1 spatial amplitude grid scale

#

Control conversion; RG -> array (T -> take log, F -> use data as is)

DoRG2logarray: T

#

Value for flagged entries; If available checked against Flag. column

The flag value can be numeric or string and there can be more than one

value in this line, separated by tabulators.

For bluefuse manual exclusion:

Flag.NOK: yes

For genepix : (both automatic and manually excluded flags)

Flag.NOK: -50 -100

Flag.NOK: NA

#

Select method to impute NA values. This is needed in connection with

Flags to deal with missing values.

Remove genes with missing spots from analysis:

Impute.Mthd: del

Impute with knn (Trojanskaya's Bioinformatics publication), k is an

integer number (the number of neighbours that are considered):

Impute.Mthd: knn k

Note that in case we find missing spots and NA was selected,

the script issues a waning and changes to "del". Otherwise the

subsequent analysis will crash.

No imputation:

Impute.Mthd: NA

#

Load.Only allows to control the program flow in the script. If T

The script aborts after loading the data before anything else has

been done with the data. Together with an alternative entry,

this gives the user some flexibility to process data in a more

flexible way by combining the automatic analysis with other R-code.

Load.Only: F

#

The following entry allows to write the normalized log ratios to an output file.

NA is for none. The string is actually only the base file name with two

endings. In this case 'nia_rawlogrt.tsv' contains the data that was

processed acording to the normalization and log options. Data is

stored row wise (i.e. each full set of genes is one row) with the gene

symbols used as colum names. The second file has as many rows as the

previous, such that each row identifies the level settings of the

corresponding data row. In this case it would be named 'nia_raweffdesc.tsv'.
DataOutFnam: nia_raw

#

The following definitions allow to identify the various columns that

are extracted from the tab delimited microarray files.

column of gene name and its name in the header

7

gene.colnam: NAME

#

column of Cy5 spot and its name in the header

R.colnam: AMPCH1

#

column of Cy5 background and its name in the header: NA if unavailable.

Rb.colnam: NA

#

column of Cy3 spot and its name in the header: may be missing (NA)

G.colnam: AMPCH2

#

column of Cy3 background and its name in the header

Gb.colnam: NA

#

column of flag id and its name in the header

Flag.colnam: NA

#

X-pos column name (NA if none)

X.colnam: PELCOL

#

Y-pos column name (NA if none)

Y.colnam: PELROW

#

Grid.no. column name (NA if none)

Grid.colnam: BLOCK

#

Do a fast file load? If one sets load.fast: to TRUE, fspma assumes that

the positions of genes found in the first file is identical with the

gene positions in all subsequent files. This speeds up data loading

considerably. If there is any doubt about whether the gene positions

are identical, one should always set this flag "FALSE".

load.fast: F

#

Next: allocate files to experiments. The number is obtained automatically from

the effects description. First column: file name , then no effects minus 1

columns to allocate the data and as final column a Boolean flag (T or F)

indicating whether the corresponding file contains a dye swap.

Unless one states that Is.Unbalanced: T (is true), all levels of

the effects have to be allocated. Missing specifications lead to an

error message and processing terminates.

file.alloc:

adult generation time sample dye swap?

R35_NIA1_AWX_ad_612_Fl_output.xls 1 1 F

R35_NIA1_AWX_ad_613_Fl_output.xls 1 2 F

R35_NIA1_AWX_ad_629b_Fl_output.xls 1 3 F

R35_NIA1_AWX_ad_630_Fl_output.xls 1 4 F

day one

R25_NIA1_AWX_d01_s16_Fl_output.xls 2 1 F

R25_NIA1_AWX_d01_s17_Fl_output.xls 2 2 F

R25_NIA1_AWX_d01_s18_Fl_output.xls 2 3 F

R25_NIA1_AWX_d01_s21_Fl_output.xls 2 4 F

day 5

R25_NIA1_AWX_d05_s13_Fl_output.xls 3 1 F

8

R35_NIA1_AWX_d05_545_Fl_output.xls 3 2 F

R35_NIA1_AWX_d05_546_Fl_output.xls 3 3 F

R35_NIA1_AWX_d05_547_Fl_output.xls 3 4 F

day 10

R25_NIA1_AWX_d10_s28_Fl_output.xls 4 1 F

R35_NIA1_AWX_d10_596_Fl_output.xls 4 2 F

R35_NIA1_AWX_d10_597_Fl_output.xls 4 3 F

R35_NIA1_AWX_d10_600_Fl_output.xls 4 4 F

day 15

R35_NIA1_AWX_d15_594_Fl_output.xls 5 1 F

R35_NIA1_AWX_d15_605_Fl_output.xls 5 2 F

R35_NIA1_AWX_d15_671_Fl_output.xls 5 3 F

R35_NIA1_AWX_d15_674_Fl_output.xls 5 4 F

day 23

R35_NIA1_AWX_d23 653_Fl_output.xls 6 1 F

R35_NIA1_AWX_d23 654_Fl_output.xls 6 2 F

R35_NIA1_AWX_d23 655b_Fl_output.xls 6 3 F

R35_NIA1_AWX_d23 670_Fl_output.xls 6 4 F

day 35

R35_NIA1_AWX_d35_631_Fl_output.xls 7 1 F

R35_NIA1_AWX_d35_632_Fl_output.xls 7 2 F

R35_NIA1_AWX_d35_633_Fl_output.xls 7 3 F

R35_NIA1_AWX_d35_651_Fl_output.xls 7 4 F

#

Provide the spike list with

name<TAB>R_concentration<TAB>G_concentration. Note that

R and G refer to the above channel names and are the

known spike concentration in that channel (only the

correct ratio is important). Hence 1<TAB>1 would also

be apropriate for non differentially expressed housekeeping genes.

spike.list:

R_con. G_con.

Ctl141002_01_A01 1 1

Ctl141002_01_A02 1 1

Ctl141002_01_A03 1 1

Ctl141002_01_A04 1 1

Ctl141002_01_A05 1 1

Ctl141002_01_A06 1 1

Ctl141002_01_A07 1 1

#... and more if available

Finally a list of all unique gene names (as found in gene.col in the data).

That should go into the experiment. This is necessary to allow for

experiment designs where people use different numbers of replicates

on slide.

genes.list:

H3078A06

H3078C06

H3078E06

H3078G06

H3078A12

#... and many more gene id.'s (all are required!)

End(Not run)

9

do.anova Interface to yasmas bfaov function (generate ANOVA object)

Description

Generate the YASMA ANOVA object that is further used to print ANOVA tables, calculate
and print variance components and to calculate and print rank tests.

Usage

do.anova(model.info, array.data)

Arguments

model.info Standard model equations and additional information to generate the
ANOVA object.

array.data Array representation of a balanced design obtained by YASMA’s rg2log.array
or rg2array functions (See yasma help for additional information).

Value

The function returns a bfaov object (See YASMA for details).

See Also

tabdel2rgdo.normalize, aov.tab.varcomp.2.file and contrast.rank.2.file

Examples

Not run:

read definition file

info <- read.defs('deffile.def')
extract model.info from the info structure

model.info <- info.2.yasmaeqns(info)

read data

RG <- tabdel2rg(info)

and normalize it

RG <- do.normalize(RG, info)

convert to array structure

aov.a <- rg2log.array(RG, log.ratio=T)

and call do.anova

av <- do.anova(model.info, aov.a)

End(Not run)

10

do.normalize Controls the normalization procedure in fspma.wrapper.

Description

Some simple slide normalization procedures can be selected via the definition file. These
include within slide location (i.e. mean) removal, within slide loess normalization, scale
removal (i.e. convert log ratios within slide to unit std. deviation) or none, if normalization
is done as an extra preprocessing step.

Usage

do.normalize(RG, info, log.fname=fspma.logfile)
fspma.logRG.loess.norm(RG, deg=1, span=0.6, show=T, show.new=F, flat=F, tolog=F,...)
fspma.logRG.shift.norm(RG,method=c("mean","median"), tolog=F)
fspma.logRG.scale.norm(RG,method=c("sd","mad",), tolog=F)

Arguments

RG data structure as described in YASMA (and SMA)
info control structure as obtained by read.defs

log.fname Log file name to dump status messages, defaults to fspma.logfile
deg polynomial degree of loess fit
span span of loess fit
show boolean flag to control graphical illustration
show.new boolean flag to control graphical illustration (after normalisation)
flat boolean flag to control graphical illustration (if TRUE, plot base line

instead of loess curve in figure)
method specify how the location (for shift) or scale of the data are obtained
tolog boolean flag that decides whether data is moved to log scale or whether

it is already on log scale.
... Parameters handed through to plot function.

Details

Normalization is controlled by info$norm.type, a vector that contains the control state-
ments in the ”Normalization:” line in the definition file. Valid entries are NA, loess, lo-
cation, scale and combinations like location<TAB>scale and loess<TAB>scale. For loess
one can optionally specify a span (between 0.25 and 1) and a degree (1 or 2). The function
returns RG, the experiments RG structure with all data normalized within slides. With-
out spike genes, loess is invalid for all single channel specifications! Consequently
this setting is not accepted. FSPMA provides slightly modified versions of YASMAs orig-
inal normalisation functions (fspma.logRG.loess.norm, fspma.logRG.shift.norm and
fspma.logRG.scale.norm). The essential difference is that FSMPA must cope with data
that is on log scale. This changes how data is moved to the log ratio - amplitide represen-
tation.

11

Value

All functions return a normalised RG object.

See Also

fspma.wrapper and spike.normalize

Examples

Not run:

read definition file

info <- read.defs('deffile.def')
read data

RG <- tabdel2rg(info)

and normalize it

RG <- do.normalize(RG, info)

End(Not run)

do.rank.variety Variety based ranking of time course data (or other multi-level
effects)

Description

”Variety” based ranking for significant differences of average channei expression over the
entire experiment.

Usage

do.rank.variety(av, RG, model.info, info, n.comps)

Arguments

av YASMA’s bfaov object.

RG YASMA’s RG structure.

model.info fspma’s model.info structure.

info fspma’s info structure.

n.comps Overall number of comparisons (calculated by fspma.wrapper over all
comparisons specified in the definition file.)

12

Details

Variety based ranking is available with the standard YASMA package. The function
do.rank.variety wraps around a version in YASMA that is based on within ANOVA ranking,
using t-distributions. This approach is only useful for dual channel reference designs, where
one tryes to assess significance between the two groups that make up the RNA mix of each
channel. Ranking is based on YASMA’s bfaov object that is used to extract all relevant
information. The null hypothesis is zero log ratios. The rank table contains gene indices,
names, adjusted p-values, an up-regulation flag and the average log ratio. It is written tab
delimited to a file that concatenates ’test.variety.’ with the name specified as info$ctrfname
(the ’Contrast.Outfile:’ entry in the definition file). Although it will produce outputs for
single channel arrays, this procedure makes conceptually no sense in that case!

Value

do.rank.variety provides a ranking that assesses the average channel log ratios for signifi-
cance. A rank table is written as tab delimited file and returned as object to the calling
function. Note that this object is not intended to be modified at user level.

See Also

tabdel2rg, do.normalize, do.anova, aov.tab.varcomp.2.file link{fspma.aovrnk} and
contrast.rank.2.file

Examples

Not run:

read definition file

info <- read.defs('deffile.def')
extract model.info from the info structure

model.info <- info.2.yasmaeqns(info)

read data

RG <- tabdel2rg(info)

and normalize it

RG <- do.normalize(RG, info)

convert to array structure

aov.a <- rg2log.array(RG, log.ratio=T)

and call do.anova

av <- do.anova(model.info, aov.a)

calculate and write ANOVA rank tables (one ANOVA per gene).

do.rank.variety(av, RG, model.info, info, n.comps=[plug in here])

End(Not run)

file.out.RG Write a microarray experiment into a tab delimited file

Description

This function is provided to convert reference design experiments from various existing data
structures to a standardised tab delimited output file format.

13

Usage

file.out.RG(info, RG, wrtchn=F)

Arguments

info A fspma info structure

RG A YASMA RG object that is written as tab delimited file.

wrtchn A boolean flag to control whether we write log ratios (default) or log
channel information (set wrtchn=TRUE).

Details

This function is provided to convert reference design experiments from various existing
data structures to a standardised output file format. The function writes two files, both
names start as is specified in info$datoutfname (entry DataOutFnam: in the definition file).
Depending on wrtchn, the first file(s) store(s) either log ratios between Cy5 and Cy3 and
thus ends with ’logrt.dat’, or there are two files with log channel values which end with
’logR.dat’ and ’logG.dat’. The function also stores the classification information (i.e. the
grouping information) of the experiment and is stored in the file ending with ’effdesc.dat’.

Value

The function writes the experiments log ratios and the corresponding effect values into tab
delimited files that can be used as input to other processing tools.

See Also

tabdel2rg, deffile.def, fspma.wrapper,

Examples

Not run:

read the data according to the definition in info

RG <- tabdel2rg(info)

write log ratios and corresponding effect values as tab delimited

files

file.out.RG(info, RG)

End(Not run)

fspma.aovrnk ANOVA based ranking of time courses (or other multi-level ef-
fects)

Description

ANOVA based ranking of experiments with respect to multi-level effects like time courses.

14

Usage

fspma.aovrnk(info, model.info, array.data, fname=NULL, n.comps)

Arguments

model.info fspma’s model.info structure.

info fspma’s info structure.

array.data Array representation of a balanced design obtained by YASMA’s rg2log.array
or rg2array functions (See yasma help for additional information).

fname Optional output file name, default taken from info structure (info$ctrfname
which resembles the ’Contrast.Outfile:’ entry in the definition file). To
guarantee unique file names this name is augmented with the string ”anova.”
at the beginning.

n.comps Number of comparisons to adjust for (this is calculated for the entire
definition file).

Details

The ranking is based on the p-value of an ANOVA model calculated for each gene. The null
hypothesis is that all levels in the rank effect have the same mean. Calculations are based
on YASMA’s bfaov object that is internally used to calculate the p-values of mixed models.
Information about random effects etc. is treated apropriately. The function generates a tab
delimited file that contains the gene information, the p-value of the F-test and the sample
averages of all levels of the rank effect.

Value

fspma.aovrnk provides a ranking by means of single gene ANOVA models. The rank table
is written as tab delimited file and returned to the calling function. Note that this object
is not meant to be manipulated at user level.

See Also

tabdel2rg, do.normalize, do.anova, aov.tab.varcomp.2.file and contrast.rank.2.file

Examples

Not run:

read definition file

info <- read.defs('deffile.def')
extract model.info from the info structure

model.info <- info.2.yasmaeqns(info)

read data

RG <- tabdel2rg(info)

and normalize it

RG <- do.normalize(RG, info)

convert to array structure

aov.a <- rg2log.array(RG, log.ratio=T)

and call do.anova

15

av <- do.anova(model.info, aov.a)

calculate and write ANOVA rank tables (one ANOVA per gene).

fspma.aovrnk(info, model.info, array.data, n.comps=[plug in here])

End(Not run)

fspma.avchannel Conversion of FSPMA objects to average channel expressions,
storage and visualisation

Description

These functions extract average channel expressions and derived information from FSPMA
objects. They allow to store and plot the resulting representation.

Usage

fspma.avchannel(fspma.obj, contrast=NULL, statenames=NULL, log2exp=F)
fspma.av.RG2file(fspma.av.RG, filename='average.channels.tsv')
fspma.av.scattp(fspma.av.RG, statename, filename='NA',
pl.title='Scatter Plot Average Expression',
x.leg='Average log channel value in G',
y.leg='Average log channel value in R',
nsamples=50, lg.diff=2, ndiff.smpls=5, plt.lwd=1,
n.sz=0.5, ud.sz=2, col.frst=T, p.dim=7.0, leg.pos='bottomright',
leg.bty='n')

Arguments

fspma.obj is either a FSPMA object as generated by fspma.wrapper

contrast Optional contrast definition used to obtain channel averages over subsets
of rank levels. These contrasts are of identical length and striture as those
specified in the definition file.

statenames Optional state names. Default are the rank names from the definition file
and ”diff” for average expression according to a contrast.

log2exp Boolean control whether we exponentiate the averages. Defaults to FALSE.

fspma.av.RG An average channel object that is obtained by calling fspma.avchannel.

filename In fspma.av.RG2file: a file name that is used to store the average ex-
pressions in a tab delimited format with ”average.channels.tsv” as default
value. In fspma.av.scattp: a file name to store the figure as encapsu-
lated postscript or ’new’ if a new graphics window should be used. In the
default case of ’NA’, the current ”device” is used for plotting.

statename Name of the level one intends to visualise in the scatter plot. In the
default case this is either a rank name or ”diff”.

pl.title Plot Title.

x.leg X axis legend.

16

y.leg Y axis legend.
nsamples Number of subsampled ”non suspicious” genes to be plotted.
lg.diff Average log fold indication lines (NA for none).
ndiff.smpls Number of suspicious genes to be plotted (those with largest up and down

regulation).
plt.lwd Line width in plot.
n.sz Point size for non suspicious genes.
ud.sz Point size for suspicious genes.
col.frst Boolean flag to control whether colour or symbols should alter first.
p.dim Figure dimension in postscript device.
leg.pos Position of legend (see plot legend function).
leg.bty Type of legend bounding box (see plot legend function).

Value

fspma.avchannel converts a FSPMA object to a fspma.av.RG object which stores average
channel expression values. The other functions have no return value. They write informa-
tion to files or plots.

See Also

fspma.wrapper and fspma.rankplot

Examples

Not run:

fspma.obj <- fspma.wrapper('twochannel.def')
fspma.av <- fspma.avchannel(fspma.obj)

allnams <- fspma.obj$info$rank.names

fspma.av.scattp(fspma.av.RG, allnams[1])

End(Not run)

fspma.rankplot Data visualisation, FSPMA rank results and M/A Plots

Description

These functions are useful tu visualise data that should be analysed by FSPMA. We provide
rank plots and plots that visualise differential expression over spot amplitude.

Usage

fspma.maplot(fspma.obj, slideno=1, pl.file='NA', pl.title='M-A Plot',
have.spike='no', nsmpls=50, xlab='Log Amplitude',
ylab='Log Ratio', cex=0.5, col=2, leg.pos='bottomright', leg.bty='n')
fspma.rankplot(fspma.obj, list.nam, no.genes=5, pl.title='Rank List',
pl.file='NA', plt.lwd=2, col.frst=T, leg.pos='bottomright', leg.bty='n')

17

Arguments

fspma.obj is either a FSPMA object as generated by fspma.wrapper

slideno number of slide that should be plotted in M/A representation

pl.file a file name to store the figure as encapsulated postscript or ’new’ if a new
graphics window should be used. In the default case of ’NA’, the current
”device” is used for plotting.

pl.title Plot Title.

have.spike Spike control: ’no’ - spike genes are not plotted. ’yes’ spike genes are
plotted if available.

nsmpls Number of subsampled genes to be plotted.

xlab X axis legend.

ylab Y axis legend.

cex Plot symbol size.

col Point colour.

leg.pos Position of legend (see plot legend function).

leg.bty Type of legend bounding box (see plot legend function).

list.nam Name of rank list to be visualised. The names replicate the names used
in fspma.wrapper to write rank tables to files.

no.genes Number of top ranked genes to be visualised.

plt.lwd Point width of lines in the plot

col.frst Boolean indicator whether to alter colors first and then symbols.

Value

Neither function returns values. Both plot information.

See Also

fspma.wrapper and fspma.avchannel

Examples

Not run:

fspma.obj <- fspma.wrapper('twochannel.def')
fspma.maplot(fspma.obj)

rank.tab.nams <- names(fspma.obj$plt.tab)

fspma.rankplot(fspma.obj, rank.tab.nams[1])

End(Not run)

18

fspma.set.globals FSPMA globals and handling function

Description

Global variables that are used internaly to control FSPMA’s functionality and handler
function.

Usage

fspma.eps
fspma.knn.max.tol
fspma.logfile
fspma.set.globals(this.eps=10^-10, this.knn.max.tol=0.001,

this.logfile='fspma.log.txt')

Arguments

this.eps eps value written to fspma.eps. The latter is used in FSPMA as lower
bound of expression values before moving to log 2 scale.

this.knn.max.tol

maximum tolerance limit written to fspma.lnn.max.tol. The latter con-
trols the number of iterations in knn imputing.

this.logfile file name copied to fspma.logfile. The lattre is used as sink to write error
messages and the processing status.

Value

The function has no value but writes to FSPMA global variables.

Examples

Not run:

set a different log file

fspma.set.globals(this.logfile='mylog.txt')
which is now used by fspma.wrapper to write the processing status.

ret <- fspma.wrapper('myexperiment.def')
reset to fspma defaults

fspma.set.globals()

End(Not run)

19

fspma.wrapper Friendly Statistics Package for Microarray Analysis (fspma) or
Stats’ without tears (i.e. coding)

Description

Microarray data analysis with normalisation, bad quality expression treatment, ANOVA
analysis and within ANOVA tests controlled by definition files.

Usage

fspma.wrapper(def.fname=NULL, RG=NULL, info=NULL,
na.debug.fname='na_debug.tsv', log.fname=fspma.logfile, init.logfile=T)

Arguments

def.fname File name of a definition file that controls analysis.

RG An optional (extended) YASMA RG object that, if provided, will skip the
data loading step and increase the efficiency of multiple rankings of the
same data (e.g. using different normalisation methods). This RG object
is an extension of yasma’s RG structures and so far kept downward com-
patible. Some functions of yasma which modify RG (like normalization)
tend to remove parts they do not know about. Calling such code will
lead to incompatibilities of the resulting RG object with some functions
within this library (e.g spike based normalization)! This can be resolved
by using the RG adaptors provided by the library (fspmaRG.2.RG).

info AN optional info structure otherwise read from definition file. This allows
together with the Load.Only: entry in the definition file to include other
processing steps on a scripting level and to repeat processing.

na.debug.fname

An optional parameter that is used to write debug information if NA
values are read from the file (i.e. before the flaged spots are treated).

log.fname Name of an ASCII log file used to store information about analysis steps.
The name defaults to ”fspma.log.txt”. Use the log file to resolve problems
with definition files.

init.logfile Optional boolean flag that controls whether a definition file should be
newly initialised. Defaulst to TRUE.

Details

fspma.wrapper is an efficient interface to microarray analysis with the YASMA package that
comes with several generalizations to allow data conversion, normalization, ANOVA and test
based inference for rather general microarray experiments. The function is controlled via a
definition file that is adaptable to every balanced reference design and slide data. It covers
two colour arrays with and without background signals and one colour data like affymetrix
and meta data generated thereof, that was normalized or pre-processed elsewhere. The main

20

restriction of this script is that it requires all slide-files of one experiment to use coherent
column names in all files. If your experiment violates this rather modest requirement, then
you need to process your files prior to using fspma. Details about definition files are provided
in deffile.def for a time course with technical replicates and on slide replication. Some
working examples are provided with the documentation as well. Finally we also povide
a definition file with download instructions on how to obtain the accompanying arrays of
a publicly available Affymetrix dataset at http://www.ccbi.cam.ac.uk/software/psyk/
software.html#fspma.

For further information on info see read.defs, for information on model.info see gen.yasma.eqns.
RG, aov.a and av are yasma’s RG structure, yasma’s array data and yasma’s ANOVA object
and described in more detail in the help to the yasma package.

Value

fspma.wrapper returns a fspma object. The object summarises all information that resulted
from the analysis run. In particular we have:

fspma.obj$RG - an extended RG structure

fspma.obj$info - R representation of the definition file

fspma.obj$model.info - all model equations (spike normalisation, ANOVA model and models
required for ranking and p-value calculation.

fspma.obj$aov.a and fspma.obj$av - YASMA anova objects for debuging purpouse.

fspma.obj$plt.tabs - all rank tables useful for visualisation purpouse.

If the ”load only” flag (info$load.only which corresponds to the Load.Only: entry) was set
in the definition file, fspma.obj contains only the first two elements.

See Also

tabdel2rg, do.normalize, spike.normalize, do.anova, fspmaRG.2.RG, aov.tab.varcomp.2.file,
contrast.rank.2.file, fspma.rankplot and fspma.avchannel

Examples

Not run:

FSPMA's logic is in the definition file. Analysis starting with

data loading, normalisation, bad quality flag treatment, ANOVA

calculations and rank tables are obtained in one go.

ret <- fspma.wrapper('mouse_testis.def')
And later, as soon as you have more understanding of what's going

on inside, you get more flexibility with a def file that

sets Load.Only T

ret <- fspma.wrapper('mouse_load_only.def')
RG <- fspmaRG.2.RG(ret)

now use yasma functions on RG (e.g. here we plot correlation

over quantile of removed data)

rg.rsq.plot(RG)

and reduce the dataset manually (remove 0.1 quantile of least

correlated genes, which was found to be a sensible number by the

previous plot)

RG <- rg.remove.quantile(RG, 0.1)

21

http://www.ccbi.cam.ac.uk/software/psyk/software.html#fspma�
http://www.ccbi.cam.ac.uk/software/psyk/software.html#fspma�

now back to FSPMA data:

ret.new <- RG.2.fspmaRG(RG, ret)

before we continue with the fspma.wrapper (this call uses the

modified experiment with fewer genes)

anything from files)

result <- fspma.wrapper(RG=RG, info=ret$info)

End(Not run)

fspmaRG.2.RG Conversion of FSPMA objects to and from RG

Description

These functions act as adaptors from FSPMA objects to (YASMA’s) RG object. They are
meant to be used in cases where YASMA functions that operate on RG structures should
collaborate with FSPMA.

Usage

fspmaRG.2.RG(fspmaobj)
RG.2.fspmaRG(RG, fspmaobj)

Arguments

fspmaobj is either a FSPMA object as generated by fspma.wrapper or a FSPMA
RG object

RG is a YASMA RG object (and possibly downwards compatible to SMA).

Value

fspmaRG.2.RG takes a FSPMA object and returns a YASMA RG object that can be passed
on to YASMA functions. RG.2.fspmaRG takes s YASMA RG object and a FSPMA object
and returns a modified FSPMA object.

See Also

tabdel2rg and fspma.wrapper

Examples

Not run:

fspma.obj <- fspma.wrapper('twochannel.def')
yasma.rg <- fspmaRG.2.RG(fspma.obj)

or alternatively with the same result

yasma.rg <- fspmaRG.2.RG(fspma.obj$RG)

remove 0.1 quantile of least correlated genes

or call other YASMA functions!

RG <- rg.remove.quantile(RG, 0.1)

and merge the modified RG with the FSPMA object.

22

fspma.new <- RG.2.fspmaRG(RG, fspma.obj)

to allow subsequent fspma analysis use externally

modified data. e.g. here do the entire run on a reduced gene set.

fspma.res <- fspma.wrapper(RG=fspma.new$RG, info=fspma.new$info)

End(Not run)

gen.yasma.eqns Convert fspma info structure to model equations and additional
modelling information.

Description

The functions info.2.yasmaeqns and gen.yasma.eqns are used to generate a standard set of
model equations of ANOVA models that allow to get ANOVA tables, variance components
and rank statistics.

Usage

info.2.yasmaeqns(info)
gen.yasma.eqns(terms, randeffs, rank.term=1)

Arguments

info Data structure obtained from function read.defs.

terms Vector of effect names (model terms without gene effect).

randeffs Boolean Vector of random effects flags.

rank.term Index of the model term that defines the ranking we are interested in.
This is typically an interaction term of the gene effect and the first effect
in terms like a gene:time, a gene:species or a gene:type interaction and
the default index will thus be 1.

Details

Converts info to ANOVA equations and additional rank information necessary to apply
YASMA to general experiments (like longitudinal problems). gen.yasma.eqns generates
default model equations (Regressors are iterative nestings of effects) and additional in-
formation that we need to calculate the ANOVA model and test statistics. The result-
ing model.info structure is used by functions do.anova, aov.tab.varcomp.2.file and
contrast.rank.2.file. The most important part of model.info is model.info$eqn, this is
the ANOVA model equation used for analysing the data.

Value

Both functions return a model.info object that is not meant to be manipulated at user level.

See Also

do.anova, aov.tab.varcomp.2.file, contrast.rank.2.file and get.spk.nrm.eqn

23

Examples

Not run:

info <- read.defs('deffile.def')
model.info <- info.2.yasmaeqna(info) ## calls gen.yasma.eqns

alternatively:

terms <- c('time', 'sample')
rand. terms <- c(FALSE, TRUE)

model.info <- gen.yasma.eqns(terms, rand. terms)

End(Not run)

read.defs Read the fspma definition file and check consistency

Description

Reads the definition file

Usage

read.defs(fname, log.fname=fspma.logfile, init.logfile=T, print.logheader=T)

Arguments

fname File name of a definition file that controls the entire analysis.

log.fname Name of log file which defaults to fspma.logfile or ’fspma.log.txt’, unless
overriddenby the user.

init.logfile Controls whether the logfile is initialised before starting the run. Its value
defaults to TRUE.

print.logheader

Flag that controls whether the starting time is written to the log file.

Details

The function reads the definition file, stores the information in the internally used info
structure, which is checked for consistency. The consitency check is meant to avoid that
apparent mistakes get caught before processing starts. In this context read.defs is useful as
a stand alone function outside fspma.wrapper, since it helps debugging the definition file.
In that context it is worth mentioning that all problems with the definition file are reported
on the R console and written into the log file. All messages point to those definition file
entries that could have led to the problem.

Value

Function read.defs returns the FSPMA info object. This is an R object that represents
microarray data analysis as described in the definition file. Any manipulations at code
level should be done with care and bearing in mind that the analysis result is no longer in
agreement with the definition file.

24

See Also

fspma.wrapper, deffile.def

Examples

Not run:

info <- read.defs('mouse_testis_adult_day5.def')

End(Not run)

specify.experiments Explains how to set up the definition file for different experimen-
tal conditions.

Description

The package fspma can be used to analyse all experiments, as long as they are reference
designs. We may work with double and single channel data, with and without background.
The input to the fspma scripts may also be normalized ”meta” information.

Usage

(1) Genepix spotted files
(2) Bluefuse spotted files
(3) Affymetrix files
(4) Pre-processed (normalized) meta information

Arguments

(1) Specify R, Rb, G and Gb columns ({R,Rb,G,Gb}.colnam:). Specify nor-
malization by setting Normalization: and finally set DoRG2logarray:
T (i.e. move to log scale).

(2) Specify R and G columns ({R,G}.colnam:). The channel background is
initialized by 0. Specify normalization by setting Normalization: and
finally set DoRG2logarray: T (i.e. move to log scale).

(3) Specify the R column only (R.colnam:). G is initialized with 1 and all
channel background with 0. Specify normalization by setting Normalization:
(NO loess normalization without spikes for single channel data!) and fi-
nally set DoRG2logarray: T (i.e. move to log scale).

(4) For meta information available as ratios or expression values: Specify
the corresponding column as R channel, turn off normalization by set-
ting Normalization: NA and set DoRG2logarray: T. For meta infor-
mation available as log expression or log ratio: same as above however
with DoRG2logarray: F.

Details

In addition one can use spike based normalization and imputing if this is necesary.

25

See Also

fspma.wrapper, tabdel2rg, deffile.def, treat.na and spike.normalize.

spike.normalize Normalization of array data with respect to spike probes

Description

Functions for spike based normalisation.

Usage

get.spk.nrm.eqn(info, model.info)
spike.normalize(RG, info, model.info)

Arguments

RG Modified (but compatible) yasma RG structure. Contains in addition to
the usual entries the slide and grid number.

info fspma’s info structure, which has a new spike-gene list.

model.info fspma’s model.info structure, which has now a new model equation for
spike normalization.

Details

The function spike.normalize normalises array data (in RG format) based on spike’s that
should be randomly positioned across the array. The normalisation procedure is controlled
via the definition file entry Normalisation:, which in this case has to be ”spike” with vari-
ous options: ”location” removes the within slide location; ”spatial” removes a within slide
loess fit conditional on spot position; ”amplitude” removes a within slide loess fit con-
ditional on amplitude. ”spatial” and ”amplitude” can be used together in which case
the conditioning is on the space - amplitude interaction. Grid number can be included
as interaction factor by specifying the modifier ”grid”. Finally one can remove scale as
well by specifying ”scale”. The spike genes are defined together with amplitude factors,
spike.name<TAB>R.spike<TAB>G.spike, where only the correct ratio is necessary. Spike
based normalisation operates on the residual in log ratio, respectively ”M” space (or on log
expression residuals, if the input is one channel arrays). We get the following spike models
that are used for a loess fit:

spike spatial –> M-log(R.spike)+log(G.spike) X:Y
spike amplitude –> M-log(R.spike)+log(G.spike) A
spike spatial amplitude grid scale –> M-log(R.spike)+log(G.spike) X:Y:A:grid

in addition the last also divides by std. deviation over spike residuals, estimated for every
sub grid separately.

26

Value

get.spk.nrm.eqn(info, model.info) generates model equations for spike based normalisation
and augments model.info. The object model.info is not meant to be manipulated at user
level. spike.normalize(RG, info, model.info) applies spike based normalisation to the aray
data stored in RG, which it returns.

See Also

fspma.wrapper, read.defs, deffile.def, info.2.yasmaeqns, and treat.na

Examples

Not run:

read definition file that specifies spike normalisation

info <- read.defs('mouse_testis_spike_norm.def')
get relevant modelling information

model.info <- info.2.model.eqns(info)

add spike model equation to model.info # (normally hidden in fspma.wrapper)

model.info <- get.spk.nrm.eqn(info, model.info)

and call normalisation

RG <- spike.normalize(RG, info, model.info)

End(Not run)

tabdel2rg Loads the array data according to the specification in the defini-
tion file.

Description

The function will load data from arbitrary tab delimited files, as long as the layout is
identical. It can read double colour arrays with and without background information,
single colour arrays and pre normalized meta data. See specify.experiments for detailed
suggestions how to adapt the definition file to various input scenarios.

Usage

tabdel2rg(info, log.fname=fspma.logfile)

Arguments

info control structure as obtained by read.defs.

log.fname name of logfile, defaults to fspma.logfile, which is ’fsmpa.log.txt’ unless
reset by the user.

27

Details

Loading arrays is controlled by all column entries in the info structure (column names). The
flag info$load.fast, which contains the value of the ”load.fast:” entry in the definition file
allows to speed up data loading if and only if all files have the genes on the same positions.
The list info$dat.file.rd, which contains all entries of the ”file.alloc:” description in the
definition file allocates files to a corrsponding set of levels. Each entry of this allocation
consists of a file name and its allocation. The final flag is a colour swap indicator.

R35_NIA1_AWX_ad_612_Fl_output.xls 1 1 F specifies that this file represents data that
corresponds to the first level in the first effect (here time) and to the first level in the second
effect (here a technical replication). The last column specifies that this array is not a colour
swap.

The function first checks whether the column header information corresponds to the prede-
fined setting in the definition file and then reads gene names and the array data (including a
spotter flag that indicates invalid spotter results). After all data has been read, the function
builds an RG structure.

Value

tabdel2rg reads microarray data from tab delimited files and returns an RG object. The
information in RG is downwards compatible with YASMA’s RG. It is however extended, to
take bad quality markers and spikes into account.

See Also

fspma.wrapper, read.defs and deffile.def.

Examples

Not run:

read definition file

info <- read.defs('deffile.def')
read data

RG <- tabdel2rg(info)

End(Not run)

treat.na Treat flaged (missing) Spots and NA values

Description

This set of functions is provided to resolve NA values in the RG structure that may arise
because they were contained in the original data. NA is also set in case that the flag
information for spots is loaded and a flag equals the info$flag.nack entry (Flag.NOK: line
in the definition file). The behaviour in the context of missing values can be controlled by
the ”Impute.Mthd:” entry in the defnition file. Options are knn<TAB>n, del or NA. The
latter implies no action. After issuing a warning message, ”no action” is however overridden
by del, if NA’s are found in the data. This user request was added, to avoid that processing
terminates unsucessfully if NA’s are left untreated.

28

Usage

treat.na(RG, method, go2log=T)
knn.impute(RG, k=10, go2log=T)
del.impute(RG)

Arguments

RG A YASMA RG object, who’s NA entries will be modified by k nearest
neighbour imputation or deleted.

method A method string that is ’knn’ for k nearest neighbour imputation (Troyan-
skaya et.al.), ’del’ if NA entries are resolved by removing the corresponding
genes and ’NA’ if there is no action taken.

go2log Optional flag, specifying whether data should be moved to log scale before
imputing.

k Number of neighbours used for calculating the knn imputation.

Details

These functions provide possibilities to resolve missing spot issues or NA values in RG
colour channels. The original proposal in yasma to use the ANOVA model for imputing
fails to work due to the large memory requirements of the corresponding linear model.

Value

These functions return RG objects, with bad quality spots corrected or the corresponding
genes removed.

See Also

tabdel2rg, deffile.def, fspma.wrapper

Examples

Not run:

read the data

RG <- tabdel2rg(info)

set the channel entries of missing or failed spots to NA:

if(!any(is.na(info$flag.nack)))

{

set.na.dx <- RG$Flg==info$flag.nack

RG$R[set.na.dx] <- NA

RG$G[set.na.dx] <- NA

}

now we treat NA according to info$impute.mthd

RG <- treat.na(RG, info$impute.mthd)

alternatively we can do this by hand and call

RG <- knn.impute(RG, 20) ## using the 20 closest profiles to impute

or remove the corresponding genes

RG <- del.impute(RG)

End(Not run)

29

