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Overview

« Fundamental Problems of Analysing Data
« Concepts in Data Analysis
« Supervised Learning

Unsupervised Learning

Model Fitting, Diagnosis and Evaluation

William of Occam and Karl R. Popper

Further Elective Courses on Data Analysis
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Nature of Data

- Data type (discrete vs. continuous)
« Observation is different from ground truth.

Discrete data: phenotype, genotype, age
group,... Ordering among labels can be
exploited. Continuous data: length, temperature,
weight, pressure, mRNA expression,...

Measurement and ground truth: Measuring
pencil length of 15.3cm +# true length of 15.3cm!
Why? Repeated measurements differ (15.2cm,
15.4cm, etc.)

— > measurement errors!
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Origin of Noise

Measurement processes involve errors which
arise from noise (fluctuations) that are or can not
be captured:

- Measurement noise.
« Misclassifications (e.g. wrong phenotype).
- Simplified Models.

Data analysis uses replicates to remove the
noise and model the remaining aspects as good
as possible.
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Refresher: Scalar Product

K measurements z! = [z[1], ..., [K]] (row
vector) represent variable y as linear function
(parameter ). — > linear regression EXpress y:

y =Y a[k]O[k], or y = =" 6 and equivalently y = 6" =
k

— > vector dot product or scalar product

y=0[1] X+ 8 [2]
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Result = Data + Model!

Linear discriminant (LDA) and principle component anal-

ysis (PCA) give different projections of the same data.
PCA

Both use linear
projections!

T
lpca = QPCAx

T
trpa = O paT

LDA
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Good Analysis Practice Ensures

Technical sufficiency of data analysis

Compatibility with biological question
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Technical Sufficiency

Avoid ad-hoc ideas

Verify hypothetical genes by hybridising tissue mix on N
microarrays. Verified gene: on n < N arrays expression
above threshold §. Problems?

1)Impossible to justify a particular n.
2)Impossible to justify a particular o

3)Verification of low expressed (e.g. regulators) and rarely
functional genes difficult.

Such “data analysis” does not fit the objective.
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Biological Relevance

Avoid “hammer and nail” syndrome

Determine “cancer genes” by combining SVM (support
vector machine, a classifier) with greedy search over
inputs. Problems?

1) Greedy search provides an arbitrary set of genes which
separate the data. — > neither optimal nor complete set of
‘cancer genes”.

2) Gene set lacks rank information about functional
importance.

The otherwise useful approach (as a diagnostic
tool) fails answering the biological question.
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Fundamental Principle in Data Analysis

Which is the better
model? Why is that the
case”?
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Fundamental Principle in Data Analysis

Which is the better
model? Why is that the

case?

Find the underlying

data generating model.
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Adequate models

Capture underlying structure and avoid
overfitting. Adjust “fiddle parameters” — > avoid
too simple and too complex.

1

\

Overfitting memo-
rises training data
including uninter-
esting noise. To
“learn something
useful from data”
we have to get

too simplistic
adequate
too complex

= complexity right.



Why Bother With Data Analysis?

Moore’s Law:
PC 1984 5 MB Hard Drive

PC 2007 2 TB Hard Drive (4*500 GB) = 400 Euro
How much paper on one PC in 2007 assuming 10.000
(single byte) characters per page ?

Why Bother With Data Analysis?

Moore’s Law:
PC 1984 5 MB Hard Drive

PC 2007 2 TB Hard Drive (4*500 GB) = 400 Euro
How much paper on one PC in 2007 assuming 10.000
(single byte) characters per page ?

It is actually a stack of paper 20 km high!
2TB ~ 2x 10" byte
= 2 x 10® pages, assuming 1000 pages = 10 cm
astack 2 x 10° * 10 cm = 2 % 10* m = 20 km
PC 2010 8 TB Hard Drive (4*2 TB) ~ 440 Euro
Stack height in 20107
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How Much Data?

Medical monitoring (sleep): 20 channels, 8 hours at 200 Hz
and 16 Bit: ~ 250 MB. A lab with 8 recording units (nights
only): about one TB per year.
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How Much Data?

Medical monitoring (sleep): 20 channels, 8 hours at 200 Hz
and 16 Bit: ~ 250 MB. A lab with 8 recording units (nights
only): about one TB per year.

Medical monitoring (cognitive neuroscience): FMRI
scanner, 1dm? volume, 10s temporal and 1mm? spatial
resolution, 16 bit, generates 10° x 360 * 2 byte ~ 720 MB per
hour: about 1 TB every two months.
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How Much Data?

Medical monitoring (sleep): 20 channels, 8 hours at 200 Hz
and 16 Bit: ~ 250 MB. A lab with 8 recording units (nights
only): about one TB per year.

Medical monitoring (cognitive neuroscience): FMRI
scanner, 1dm? volume, 10s temporal and 1mm? spatial
resolution, 16 bit, generates 10° x 360 * 2 byte ~ 720 MB per
hour: about 1 TB every two months.

High throughput molecular biology: Small microarray
facility, 12 slides per 24 hours: about 240 MB image files
per day. Deep sequencing (ABI Solid+) about 300 GB per
week (two flow cells, aligned reads).

Amiiini ini niiii iriant manual analysis
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Example: Sleep EEG

wake

stage 1

1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000

stage 2 stage 3

1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000

stage 4 REM

1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
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Example: Metabolomics

Gene Expression

I I I I I
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2 4 6
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Analysis Strategies

All data analysis problems can be grouped into
two categories:

1. Supervised Learning methods are used for
regression problems.

2. Unsupervised Learning methods are used for
exploratory data analysis.
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Regression Problems

Noisy Data from life science experiment
Z=A{(y1,x1), ..., (yn, xn)} with x,, denoting
vectors.

Regression fits based on Z an “optimal” function
relating « and y:

y=[(x:0)+eN)
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Regression Problems

Noisy Data from life science experiment
Z =A{(y1,x1), ..., (yn,xn)} With x,, denoting
vectors.

Regression fits based on Z an “optimal” function
relating « and y:

y = [(x:0) +€(N)

Noise requires a deterministic and a random
component.

— > Inherent uncertainty, y is a random variable!
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Variables vs. Random Variables

Variables: x represents deterministic value.

Random Variables: = represents collection of
values. Density function p(x) describes relative
occurrence of values. Like sand heap specifying
occurrence of grain positions.

Area of shaded
region: proba-
bility observing
sample in interval
Plx € |[ab]) =

f;:ap(x)dx. a b X
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p(x)

-

Implication of Randomness
A

———————

Best = * deterministic

predicting _ _
expected y val- relationship

ves from z (local | noise:
average). Com- | random
plete description | aspect N
Includes noise S
characteristics. >~

Red error bars represent the standard deviation
which is complete description of Gaussian noise.

———————

—
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Classification

Classification is instance of regression, with
predicted values (i.e. the y) being discrete.

A
1
y
Two classes: predicted expectation: P(y=1|x)
Y = {o,1y, -/
Predicted expec-
tations are class
probabilities 0 class conditional densities: p(x]y) X
P(y =1 |x) . Classlabels:  "blue': y=0 "red": y=1
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Exploratory Data Analysis
Search of unknown structure in a data set
X ={x,29,...,xN}, x, distributed according to
unknown pdf p(x).

Learning task: summarise = by an unobserved
variable t¢.

Typical models:
Mixture density models:
plx) =), . Plt=Fk)p(z|t=k),and t € {1, .., K}.
Continuous latent variable models:
= [ p(t)p(z[t)dt, v € R*, t € R and k > d.
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Mixture Density Model

Example: Gaussian mixture model

p(z|t = k) = N(x; ug, \) - @ Gaussian density function.

0.1
0.09

0.08
0.07
0.06
0.05+

0.04
003 il '“ i
0.02 mw&\\:\‘\

0.01

Summary: the k& which generated x — > Clustering.
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Continuous Latent Variable Model

Example - PCA (principle component analysis):

r=m+ Wit + ..+ Wetg,x € RF, t = [t1, ..., 14] € R?
Wy : [k x 1] d-th eigenvector of sample covariance matrix

t ~ N(t;0,A), with
A : [d x d] diagonal
Cov. matrix
Summary: lower di-
mensional continu-
ous representation
— > dimensionality
reduction

I | I | |
Lo S w N = o = N w ~ o
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Analysis Tasks and Methods

Task

— > Method

predict continuous vy
from input data

predict discrete y from
input data

find unknown groups in
input data

find low dimensional
representation for input
data

Model Fitting

- >

Regression

Classification

Clustering (e.g. K-
means, mixture mod-
els)

Dimensionality reduc-
tion PCA, independent
component analysis
(ICA)
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» Choose appropriate analysis methodology

» Adapt model parameters to data (“learning”,

iInference)

« Apply model diagnostics (performance
assessment, model selection)
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Assessing Model Parameters

Goal: tune 6 such that f(x,; @) represents all
(ynx,) pairs well.

Need expression we may optimise (maximise,
minimise) for good fit of all n “training” samples.
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Assessing Model Parameters

Goal: tune 0 such that f(x,; 8) represents all
(ynx,,) pairs well.

Need expression we may optimise (maximise,
minimise) for good fit of all n “training” samples.

Possible choice: sum of squared errors (SSE).
ldea: subtract deterministic part from y,,:
€n = yYn — f(x,; 0) + SUummation

SSE = ZE == Z wna 2

Several objective functions e.g. (log)-likelinood
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Major Problem

True model - linear regression:

Yy = w£9+en

Finite sample size and arbitrarily complex
models: What is the minimum of the SSE?

Think “phone book”: Perfect memorising of all v,
modelling error 0, SSE — > 0

— > SSE unsuitable for model selection! (likelinood likewise!)
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Adequacy of models

Optimise model structure and avoid overfitting.
Wrong model class

does not capture
“truth” and performs
worse in applications.
Some model classes:
too simplistic Y= kz+d+e

adequate y=Ilo*+kx+d+e

too complex J

y= Zj:o<xjkj) T

e

How getting complexity right ?
See the ideas by Karl R. Popper!
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Human Intuition and Complexity

How many components?

Object A Object B
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Human Intuition and Complexity

How many components?

+ +

Object A Object B
Most likely answer:




Occam’s Razor

We implicitly apply Occam’s Razor

William of Occam (or Ockham)
(1288 - 1348)

Entia non sunt multiplicanda sine necessi-
tate: Entities are not to be multiplied
without necessity.

Interpretation: always opt for an ex-
planation with as few as possible

" causes, factors, or variables.
Material from htt p: // en. wi ki pedi a. org/wi ki /Wl 1iam of Ockham
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Occams Razor in ML

Model selection can be done by the following approaches:

* Add complexity penalty to objective function. Many
choices: AIC (Akaikes information criterion), BIC
(Bayesian information criterion), MDL (minimum
description length), etc.

* Use learning methods like Bayesian inference with
Occam'’s razor built in.

* Use empirical approaches comparing model classes
by validation testing (computer simulation using
independent data).
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http://en.wikipedia.org/wiki/William_of_Ockham

Instances of model selection

* Variable selection: search for input subsets which
improve predictive performance or identify important
variables (e.g. differentially expressed genes).

* Change point detection: Separating data into groups
which show similar statistical properties.

* Clustering: (see above)

* Determining optimal model orders (applies to most ML
methods!)

* Determining suitable noise characteristics.
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Validation: Diagnostic Measures

Mean square generalisation error (MSE;.,;, average SSE!)
for assessing regression models.

MSE,,.; = — Z test test 0tram))2

Classification is tested by the generalisation accuracy
ACCytegt -

test test 69traa7t))

= argmax(P(y = k|x,

test Atest
ACCrest = N§ O™, U

Classify such that most probable class wins. Estimate
fraction of correctly classified test cases.

n g,
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Validation: Estimation Procedures

Trade-off:
Reliable model fit requires large “training sets”
Unbiased diagnostics require large “test sets”

Diagnostic quantities are only unbiased if we
leave test samples untouched! Test samples
must not be used for any modelling decisions.

— > Solution: reuse samples by iterating over
model fitting and testing.
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N-Fold Cross Testing
Sketch and MatLab like pseudo code

allres=[]; allpred=[];
test samplefold 1 for n=1:n_folds
test sample fold 2 % split into training and test data
[train, test]=foldsplit(orig data, n_folds, n);
% nodel inference

L [ model ] =trai nfunc(train, fiddleparans);

°® % store this folds true targets and predictions
[res]=truetarg(test);

o [ pred] =predtarg(test, nodel);

allres=[allres; res];
all pred=[al |l pred; pred];
end

test samplefold N

Leave one out has as many folds as samples. An
alternative by resampling with replacement is called
Bootstrapping.
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In Depth Courses

Data Analysis is an important topic in modern life sciences. Three elective courses
provide more advanced topics (In English, providing theoretical concepts and practical
experience in the computer lab).

@ Efficient Microarray Data Analysis using R and FSPMA (793.403) 1.0 HRS, winter term, 1.5
ETCS, A two day blocked lecture held entirely in computer lab.

®  Machine Learning and Pattern Recognition for Bioinformatics (793.404) 3.0 HRS, winter term,
catalogued elective course with 4.5 ETCS - theoretical part and MatLab based
practical in the computer lab.

® Bayesian Data Analysis in the Life Sciences (793.402) 3.0 HRS, summer term, 4.5 ETCS -
theoretical part and 3 days blocked MatLab practical in the computer lab.

Further details at
http://ww. sykacek. net/teachi ng. ht
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