
Why Understand Data Analysis?
Result = Data + Model!

Linear discriminant (LDA) and principle component
analysis (PCA) give different projections of the same data.

PCA
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LDA
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Both use linear
projections!

tPCA = θT
PCAx

tLDA = θT
LDAx
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The Nature of Data
• Discrete valued observations (e.g. class labels).

• Continuous valued observations (e.g. measurements).

Measurement processes involve errors which arrise from
noise (fluctuations) that are or can not be captured:

• Measurement noise.

• Wrong classifications (e.g. disease state).

• Simplified Models.

Individual data points do thus not reflect ground truth. Data
analysis uses replicates to remove the noise and model
the remaining aspects as good as possible.
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Overview

• Fundamental Problems of Analysing Data
• Concepts for Data Analysis
• Supervised Learning
• Unsupervised Learning
• Matrices and Linear Regression (connection

with Comp. Math. part!)
• Empirical Approaches for Diagnosing Models
• Maximum Likelihood
• Bayesian Inference
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Fundamental Principle in Data Analysis

Which is the better
model? Why is that the
case?

Find (or abstract from)
the underlying model
that generated the
data.
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Good Statistical Practise II
Avoid the “hammer and nail” syndrom and use
methods which indeed answer the biological
questions.
Example: identify cancer genes from microarrays obtained from cancer and wild type
tissues.

We could propose using an SVM (support vector machine) and a greegy search strategy
to find a gene set which is optimal for cancer predition. Aspects worth considering:

1) In most data sets, the SVM does not outperform a much simpler linear classifier using
a single gene.

2) Greedy search provides a set which will work well for the classification task but does
certainly not allow claiming having a complete cancer gene set.

3) The gene set provides no ranking w.r.t. functionally important genes.

An otherwise useful approach (as a diagnostic
tool) fails here answering the biological question!
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Good Statistical Practise I
Avoid ad hoc rules and match data analysis to
the application domain.
Example: Proove hypothetical genes by measurements.

A simple rule for “proving genes”: An RNA mix of K biological states, is hybridised on N

microarrays. We declare all genes as verified, if n < N arrays show expression above a
threshold δ. Aspects worth considering:

1)Motivation of n - why for example n = 6 and not one more or less?

2)Motivation of δ - how is it specified?

3)We know a-priori that certain genes (e.g.transcription factors) tend to showing smaller
expression than others. The required expression level will bias the proof towards highly
expressed genes!

Approach does not fit the objective. − >
Benchmark your ideas! (e.g. Do you produce
more false negatives among certain candidates?)
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Essential Rules of Probability Calculus
• If A and B represent mutually exclusive

events with probabilities P (A) and P (B), the
probability that either event occurs is
P (A) + P (B).

• The joint probability over A and B is:
P (A, B) = P (A)P (B|A) = P (B)P (A|B). If A
and B are independent we have
P (B|A) = P (B) and P (A|B) = P (A).

• Given P (A, B, C) = P (A)P (B|A)P (C|A, B),
we obtain P (C, A) =

∫

B
P (A, B, C)dB by

integration (here also named marginalisation).
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Cumulative Distribution Function

An equivalent characterisation for univariate
random variables is provided by the so called
cumulative distribution function (cdf), F (x).
The cdf F (x) denotes
the probability that a re-
alisation of the random
variable is smaller than
x. F (a) is thus the prob-
ability P (x < a). xa

P(x<a)
1

0

− > the pdf p(x) = dF (ξ)
dξ

|ξ=x is the derivative of the cdf at x.
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Random Variable and PDF
Data analysis is inherently connected with the concept of
random variables. A random variable is a non deterministic
quantity where repeated observations differ and are
generated according to some overall property. Properties
of random variables are for example captured by an
associated probability density function (pdf), p(x).

The pdf allows deduc-
ing the probability that a
new realisation falls into
a particular set, P (x ∈

[a, b]) =
∫ b

x=a
p(x)dx. x

p(x)

a b
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Adequate models
Capture underlying structure and avoid
overfitting. “Fiddle parameters” affecting model
complexity can have adverse effects.

too simplistic

too complex 
adequate

Idea: overfitting is a result of tun-

ing the model towards the train-

ing data. Over or under-complex

models that do not capture the un-

derlying data generating mecha-

nism will perform worse on novel

data obtained from the generating

model than an appropriate model.
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What About Data Generation?

Medical monitoring 1:
20 channels EEG+physiological signals 8 hours sleep at 200 Hz and 16 Bit :
20 ∗ 8 ∗ 3600 ∗ 200 ∗ 2 ≈ 230, 4106 byte ≈ 250 MB.
A single sleep lab with 8 recording units, operated at nights only, will generate one TB in
just over a year.

Medical monitoring 2:
An FMRI scanner, 1dm3 volume, 10s temporal and 1mm3 spatial resolution, 16 bit.
One scanner generates 106 ∗ 360 ∗ 2 byte ≈ 720 MB per hour which fills 1 TB in about 58

days.
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Why Bother With Data Analysis?

Moore’s Law:
PC 1984 5 MB Hard Drive
PC 2007 2 TB Hard Drive (4*500 GB) ≈ 400 Euro

How much paper on one PC in 2007 assuming 10.000
(single byte) characters per page ?

It is actually a stack of paper 20 km high!
2 TB ≈ 2 ∗ 1012 byte
= 2 ∗ 108 pages, assuming 1000 pages = 10 cm
a stack 2 ∗ 105 ∗ 10 cm = 2 ∗ 104 m = 20 km
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Example: Metabolomics
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Example: Sleep EEG
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Manual Analysis Task

Which sine wave has the correct phase?
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What About Data Generation?

Medical monitoring 1:
20 channels EEG+physiological signals 8 hours sleep at 200 Hz and 16 Bit :
20 ∗ 8 ∗ 3600 ∗ 200 ∗ 2 ≈ 230, 4106 byte ≈ 250 MB.
A single sleep lab with 8 recording units, operated at nights only, will generate one TB in
just over a year.

Medical monitoring 2:
An FMRI scanner, 1dm3 volume, 10s temporal and 1mm3 spatial resolution, 16 bit.
One scanner generates 106 ∗ 360 ∗ 2 byte ≈ 720 MB per hour which fills 1 TB in about 58

days.

High throughput molecular biology:
A small lab produces up to 12 slides per 24 hours. One slide can contain up to 30.000

probes with ≈ 300 pixels/probe at 16 bit. Since we scan the entire array this is about 240

MB per 24 hours.

Such data can for two reasons not be analysed manually:
Amount and “Noise”
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Mixture Density Models
Gaussian mixture model: p(x|t = k) = N (x; µk, λk), i.e. a
(possibly multivariate) Gaussian density function.
K-means clustering: can be regarded as a mixture density
model with P (t = k) = 1/K and p(x|t = k) being K uniform
densities with domains emerging from the Voronoi
tesselation defined by the K cluster centers.
Hidden Markov Model: assumes a one dimensional
ordering (e.g. time) among the latent variables tn. We have
thus a more complicated prior: P (tn|tn−1).

These models infer as summary information which mixture
component generated the data point xn − > Clustering.
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Exploratory Data Analysis
Exploratory data analysis searches for unknown
structure in a data set of size N of the type
X = {x1, x2, ..., xN}, with the xn drawn from an
unknown pdf p(x). The learning task is modelling
x as a function of an unobserved (latent) variable
t, which provides a summary of the data.

Typical models for exploratory data analysis:
Mixture density models:
p(x) =

∑

k P (t = k)p(x|t = k), and t ∈ {1, .., K}.
Continuous latent variable models:
p(x) =

∫

t
p(t)p(x|t)dt, x ∈ <k, t ∈ <d and k > d.
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Regression Problems
Regression is concerned with data sets of size N
of the type Z = {(y1, x1), (y2, x2), ...(yN , xN)}, with
the tuples (yn, xn) drawn from an unknown joint
pdf p(y, x). The learning task is modelling the
dependent variable, y, as a function of the
independent variable x.

Typical regression models:
Linear regression: p(y|x) = N (kx + d, λ) and
y ∈ <.
Logistig regression: P (y|x) = cdf logistig(kx + d)
and y ∈ {0, 1}.
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Analysis Strategies

All data analysis problems can be grouped into
two categopries:

1. Supervised Learning methods are used for
regression problems.

2. Unsupervised Learning methods are used for
exploratory data analysis.
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Matrix Multiplication

Matrix Inner Product (A’s column no. equals B’s
row no.): C = AB ∀n, m : cn,m =

∑

i an,ibi,m

MatLab: >> C = A ∗ B;
Associative and commutative?
Note: (AB)T = BTAT

However: (A + B)2 = A2 + AB + BA + B2

Hadamard Product (A, B equal size):
C = A · B, ∀n, m : cn,m = an,mbn,m

MatLab: >> C = A. ∗ B;
Associative and commutative?
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Matrix Operations

Transposition: B = AT , ∀n, m : bm,n = an,m

MatLab: >> B = A′;

Addition (A, B equal size):
C = A + B, ∀n, m : cn,m = an,m + bn,m

MatLab: >> C = A + B;
Associative and commutative?

Matrix times constant:
B = λA ∀n, m : bn,m = λan,m

MatLab: >> B = lambda ∗ A;
Associative and commutative?

jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 23/67

Matrices for Data Analysis
Important to simplify notation!
Definition n-dimensional Euclidian Space R

n:

R
n = R × R × · · · × R

︸ ︷︷ ︸

n times

− > Cartesian product

Definition of a matrix (n rows, m columns):

M =






m1,1 · · · m1,m
... . . . ...

mn,1 · · · mn,m




 = (m1, · · · , mm) and mi ∈ R

n

MatLab: >> M = [[a, b, c]; [d, e, f ]; ...]; What are the mi?

jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 22/67

Continuous latent variable models
Common aspect: x = [m+]Wt[+ε], W : [d × k] dimensional
coefficients matrix, m, ε : optional mean and noise term.
PCA (principle component analysis): t ∼ N (t; 0, Λ),
Λ : [d × d] diagonal cov. matrix, ε : 0, m: data mean.
Factor analysis: t ∼ N (t; 0, Λ), Λ : [d × d] general cov.
matrix, εk ∼ N(εk; 0, λk) and m: data mean.
ICA (independent component analysis): t ∼

∏

d p(td|θd)

and p(td|θd) : univariate density functions, at maximum one
Gaussian, m, ε : implementation dependent.

These models provide as summary a lower dimensional
representation of the data − > dimensionality reduction.
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The Least Squares Optimum

is, as previously discussed, obtained as
Θ̂ = argminΘ(lsd). Similar to unconditional
optimisation of functions:

• We take the derivative with respect to the
quantity we want to optimise for.

• and set the derivative equal to zero.

lsd = Θ
TXTXΘ − 2ΘTXTy + yTy

Special: we take derivatives w.r.t the vector Θ!
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Model fitting II

We can then immediately write

lsd =
∑

n

(
yn − xT

nΘ
)2

= (XΘ − y)T (XΘ − y)

which contains no sums any more and is an
extremely convenient method for deriving model
fitting procedures and code for numerical tools
like MatLab.
MatLab:>> y_d = X ∗ theta − y;

>> LSD = y_d′ ∗ y_d;
two lines to be more efficient!
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Model fitting I

is often done by minimising least squares
differences

Θ̂ = argminΘ

(
∑

n

(
yn − xT

nΘ
)2

)

Importance of thinking in terms of matrices:

X =






xT
1
...

xT
N




 and y =






y1
...

yN





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Matrices and Data Analysis

Just to make sure that you see the connection between matrices and data analysis, here
an example:

Assume N samples of k “input” measurements collected in
xn and one dependent variable yn, which we intend
modelling as a function f(xn,Θ) parameterised by Θ. This
type of modelling is called regression.
We can only move on deciding on a particular f(xn,Θ).
For simplicity we assume that the best guess of yn is
obtained as linear combination of xn. This allows writing:

yn =
∑

k

xn[k]Θ[k], or yn = xT
nΘ
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Diagonal and Identity Matrices

Diagonal matrix: A = diag(a1,1, .., an,n), defines a
matrix with the only non zero elements located
on the main diagonal
MatLab: >> A = diag(a); % places a into main diagonal of A

>> a = diag(A); % places main diagonal of A into a

Identity matrix: I = diag(1, .., 1)
neutral element of matrix multiplication:
IA = AI = A

MatLab: >> I = eye(n); % generates an [n × n]
identity matrix.
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The Determinant
The determinant |A| (MatLab: >> det(A))
converts a square matrix to a real number.
|A| = 0 implies that A is singular
|A| =

∏

n λn, where λn are the eigenvalues of A

if |A| is an upper or lower diagonal matrix:
|A| =

∏n
i=1 ai,i

Recursive definition w.r.t j-th row (highschool!):

|A| =
∑

i

(−1)i+jai,j|Ai,j|

|Ai,j | is the determinant of the submatrix when removing the j-th row and i-th column.
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Square Matrices

Rank of a matrix r(A): number of linearly
independent columns (or rows, that’s the same)
of A.

Square matrix A is a square matrix if no. rows
equals no. cols, that is: n = m.

Square matrix A is non-singular if rank r(A) = n.
The Determinant and the inverse are defined for
square matrices.

Note: XTX from the previous slide is a square
matrix!

jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 30/67

Gradient Vectors of LSD Expression

∇Θ(ΘT XT XΘ) = 2XT XΘ

∇Θ(−2ΘT XT y) = −2XT y

and

∇Θ(yT y) = 0

The gradient vector w.r.t. Θ is thus given by:

∇Θ(lsd) = 2(XT XΘ − XT y).

Solution: 2(XT XΘ̂ − XT y) = 0 or XT XΘ̂ = XT y

− > we have to remove XT X from the left side of the
equality.
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Solution for Least Squares Optimum
We have to solve:

XTXΘ̂ = XTy

for Θ̂. We thus multiply both sides of the equality
from the left with (XTX)−1. Left hand slide:

(XTX)−1(XTX)Θ̂ = IΘ̂ = Θ̂

The solution is thus:

Θ̂ = (XTX)−1XTy

in MatLab: theta_hat = pinv(X ′ ∗ X) ∗ X ′ ∗ y;
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Moore Penrose Pseudo Inverse

Inverting ill conditioned (close to singular) matrices involves
quantities close to machine precision. Results derived from
such inverse matrices result in large numerical errors.

Pracatical rule - never use matrix inversion, always use the
Moore Penrose pseudo inverse.

A+ = lim
δ→0

(AT A + δI)−1AT

MatLab: >> A_plus = pinv(A);

If A square and not ill-conditioned:
A+A = A−1(AT )−1AT A = I
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Using Inverse Matrices
Consider:

Ax = b

with A square [n × n], then:

x = A−1b

Such operations are often found in data analysis,
e.g. in finding least squares solutions.

Most important: Unlike in one dimensional
operations, you must here multiply from the left!
About 80% get this wrong in the exam!
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Inverse Matrix

If matrix A is non-singular, we get a non-singular
matrix B = A−1, such that, BA = AB = I.
Matrix B is the inverse of A

MatLab:>> B = Aˆ(−1)

Remarks: (A−1)T = (AT )−1 and
(AB)−1 = B−1A−1

Matrix A is orthonormal if ATA = I, hence
AT = A−1

Examples: projection to principal axis (PCA)
Permutation matrix P in every row and column one 1 entry, otherwise 0
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First Scenario

Suppose a life science experiment provided
some noisy data Z = {(y1, x1), ..., (yN , xN)}.
Note: xn possibly multivariate i.e. vectors.

Based on Z, we have an inference problem of
finding an “optimal” relation between x and y:

p(y|x) = f(x; θ) + ε(λ)
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Regression Scenarios in Life Sciences

1. Given measurements xn and some
corresponding dependent information yn, we
might ask: How are they related?

2. Given two sets of measurements xn and zn,
we might ask: Which of those are closer
related to some corresponding dependent
information yn?

− > two instances of “inference” commonly
found in applied life sciences.
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Assessing Model Parameters
Idea: subtract the deterministic part from yn:

εn = yn − f(xn; θ)

For convenience introduce X = {x1, ...,xN} and
D = {y1, ..., yN}. Assuming that εn are i.i.d
samples, we get the likelihood function:

p(D|θ, λ,X ) =
∏

n

p(yn|θ, λ,xn)

which is a suitable objective function to be
maximized for θ and λ.
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Inference

Parameter Inference:

Implies knowing f(x; θ) and the noise model ε(λ)
up to unknown parameters (θ and λ) which we
will be inferring from data.

Model Inference:

A more realistic assumption is that the model
class is unknown and we will be
inferring model class and parameters.
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First Scenario

Suppose a life science experiment provided
some noisy data Z = {(y1, x1), ..., (yN , xN)}.
Note: xn possibly multivariate i.e. vectors.

Based on Z, we have an inference problem of
finding an “optimal” relation between x and y:

p(y|x) = f(x; θ) + ε(λ)

Noise requires a deterministic and a random
component.

− > Inherent uncertainty, y is a random variable!
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Practical Data Analysis

The quality of the inferred model will most often depend on
the chosen data representation and settings of “fiddle
parameters” like model order or smothness inducing
coefficients.
This suggests considering

• transformations of the data (for good
representations and filling in missing
information)

• measures (quantify adequacy of models)
• and methods for assessing models

(determine adequacy of models)
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Classification and Sampling Paradigm

P (yn|xn) =
P (yn)p(xn|yn)

p(xn)

− > Bayes theorem suggests that we can also model class
priors P (yn) and class conditional densities p(xn|yn).

P(y="red"|x)

0

1

Advantage: a useful density model, disadvantage: more complicated
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Likelihood and Classification

“Classification” often used synonymously for regression
with discrete outcomes. Likelihood of regression model:

P (D|X ; θ) =
∏

n

P (yn|xn,θ)

To enforce
∑

yn
P (yn|xn,θ) is 1, we apply a suitable output

transformation, e.g. the cdf of the logistig distribution:

P (yn|x
T
nθ) =

1

1 + exp((2yn − 1)xT
nθ)

Probabilities are certainty measures about classes to avoid ignorant decisions:
Surgeon: Amputate or not?
Nurse: The SVM says +1.
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Likelihood and Linear Regression

Assuming N samples, we have:

p(yn|xn; θ, λ) = (2π)−0.5λ0.5 exp(−0.5λ(yn − xT
nθ)2) and

p(D|X ; θ, λ) = (2π)−
N
2 λ

N
2 exp(−0.5λ

∑

n

(yn − xT
nθ)2)

Taking the log, we get the log likelihood:

llh =
N

2
(log(λ)−log(2π))−0.5λ(y−Xθ)T (y−Xθ)

which, if we consider maximising for θ only, is a familiar expression.

− > minimising least squares assumes Gaussian noise!

jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 41/67



Model Diagnostic Measures
The mean square generalisation error (MSEtest) allows
assessing regression models.

MSEtest =
1

N
(ytest−f(X test; θtrain))T (ytest−f(X test; θtrain))

Classification aims at labeling novel samples correctly.
This is tested by the generalisation accuracy acctest.

∀n ŷtest[n] = argmaxk(P (y = k|X test[n, :]θtrain))

acctest =
1

N

∑

n

δ(ytest[n], ŷtest[n])

We classify such that the most probable class wins and
estimate the fraction of correctly classified test cases.
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Adequate models
Capture underlying structure and avoid
overfitting. Fiddle parameters affecting model
complexity can have adverse effects.

too simplistic

too complex 
adequate

Over or under-complex models
that do not capture the underlying
data generating mechanism will
perform worse on novel data ob-
tained from the generating model
than an appropriate model. Model
classes (just examples):
y = kx + d + ε

y = lx2 + kx + d + ε

y =
∑J

j=0
(xjkj) + ε

all cases: ε ∼ N (ε; 0, λ).

Keeping data for validation and test purpose
allows diagnosis!
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Data Transformations
Match modelling assumptions:
Measurements from life sciences sometimes provide strictly positive quantities (e.g.

RNA concentration). Strictly positive quantities are necessarily non Gaussian. Modelling

based on Gaussianity assumptions (e.g. logistic regression) could thus benefit from

transforming measurements to R, which is in this case for example obtained by taking

logs.

Improve modelling:
Modelling can benefit from simple linear transformations like adjusting inputs to zero

mean and unit std. deviations (in the context of Bayesian priors), or from projecting to

principal component directions (i.e. zero covariance among all variables).

Transformations must be information preserving, otherwise they are dangerous. In
theory neither of these transformations makes a difference!
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Missing Values

Models that do not represent the joint distribution of the
data, can not deal with missing observations. Solution:

• Modelling based on joint input output distributions (e.g.

classification in the sampling paradigm) and marginalising over all
missing values during inference.

• Fill in missing values a-priori (e.g. k-nearest neighbour
imputing) and fit model of choice to completed data.

The former is more principled though more involved and
limited to using certain models. The latter remains ad hoc.
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Missclassification Cost
Classifying correctly induces zero cost. A false
negative for class k induces cost αk.
Predicting y = t results in an expected cost
(deciding that the true y is probably t, this is the cost we
expect to suffer):

C =
∑

k 6=t

P (y = k|x)αk

Missclassification cost C is thus minimised by
classifying y = argmaxk(P (y = k|x)αk).
This structure is commonly found in life science applications. In cancer screening a false
negative is obviously much worse than a false positive.
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More on Assessing Classifiers

What is the implication of predicting the label
which got largest posterior probability?
Consider an individual prediction and that we know the
correct posterior P (y|x): deciding for label y = 1 implies
being correct with probability P (y = 1|x) and being wrong
with probability 1 − P (y = 1|x).

If we decide for the label k = argmaxk(P (y = k|x)), we will
thus minimise the overall number of missclassifications.

What if the missclassifications cost is class
dependant?

jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 51/67

N-Fold Cross Testing
Sketch and MatLab like pseudo code

test sample fold 1

test sample fold 2

test sample fold N

allres=[]; allpred=[];

for n=1:n_folds

% split into training and test data

[train, test]=foldsplit(orig_data, n_folds, n);

% model inference

[model]=trainfunc(train, fiddleparams);

% store this folds true targets and predictions

[res]=truetarg(test);

[pred]=predtarg(test, model);

allres=[allres; res];

allpred=[allpred; pred];

end

Leave one out has as many folds as samples. An
alternative by resampling with replacement is called
Bootstrapping.
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Estimating Diagnostic Measures

Trade-off: reliable inference requires large
“training sets” (i.e. many samples for model fitting); unbiased
diagnostics require large “test sets” (i.e. many novel

samples for assessing the model).

Diagnostic quantities are only unbiased if we
leave test samples untouched! Test samples
must not be used for any modelling decisions.

− > Solution: reuse samples by iterating over
model fitting and testing.

jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 49/67



Mc Nemars Test
The idea of Mc Nemars test is that differences in classifiers
manifest themselves in differently classified samples. This
allows prodcing a 2 by 2 contingency table:

C2w C2c

C1c na nbthc

C1w nbthw nb

Cxc and Cxw refer to samples correctly / wrongly

labeled by classifier x. Differences manifest in the

number of samples, na, which C1 labels correctly

and C2 labels wrongly and the number of samples,

nb, where the situation is vice versa.

If both classifiers are equal, (na, nb) is a sample of drawing
na + nb times from a Binomial distrbution with probability
0.5. The null hypothesis of Mc Nemars test is the Binomial
Bn(na + nb, 0.5) and we obtain the p-value by calculating
the tail probability from (na, nb) onwards.
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Comparing Classifiers
Verification particular choices like the chosen model and
fiddle parameters requires performance comparisons.
Default Accuracy:
The most trivial competitor predicts for every sample it’s
prior probability and thus always the majority class.
Competing Classifiers:
Since it is not at all clear, whether a particular model works
well in the case at hand, one should use a set of different
approaches. A simple, yet still powerful approach is the so
called k nearest neighbour classifier.
Given several performance measures, we should
investigate, whether differences are significant.
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ROC Curve II

1

1
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green
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main diagonal!
above
necessarily
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ROC curve: s(γ) over
1 − p(γ)

Classifier a dominates b if
∀sa, sb = s : pb(s

−1
b ) < pa(s

−1
a )

Given domination, the area
under the ROC curve (AUC)
provides a quality measure
of the classifier.

AUC and survival probability: AUC = P (P (y = 1|x ∼ p(x|1)) > P (y = 1|x ∼ p(x|0))).
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ROC Curve I

For unknown missclassification cost, the Receiver
Operating Characteristic (ROC) curve provides means for
assessing binary classifiers.

Sensitivity: s(γ) =

∑

n|yn=1 δ(P (yn = 1|xn) > γ)

N+

Specificity: p(γ) =

∑

n|yn=0 δ(P (yn = 1|xn) < γ)

N−

depend on a detection threshold γ; δ() maps “true” to 1 and
“false” to 0; N+ is the number of positive and N− the
number of negative samples.
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Occam’s Razor

We implicitly apply Occam’s Razor

William of Occam (or Ockham)
(1288 - 1348)

Entia non sunt multiplicanda sine necessi-

tate: Entities are not to be multiplied
without necessity.
Interpretation: One should always
opt for an explanation in terms of the
fewest possible number of causes,
factors, or variables.

Material from http://en.wikipedia.org/wiki/William_of_Ockham.
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Guess the Correct “Model”

Comparing models requires complexity penalties on top of the likelihood! (AIC, BIC, etc.)
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Guess the Correct “Model”
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A Major Problem
True model - linear regression, Gaussian noise:

p(y|x) = f(x; θ) + ε(λ)

f(x; θ) = [1, xT ]θ and ε(λ) = N (ε; 0, λ), with λ
denoting “precision” (i. e. inverse variance).
Finite sample size and different model classes:
What is the maximum of the likelihood?

Think “phone book”: Perfect memorizing of all yn,
modelling error 0, λ− > ∞, p(D|θ, λ,X )− > ∞.

− > likelihood unsuitable objective for model inference!
Why is memorizing useless?
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http://en.wikipedia.org/wiki/William_of_Ockham


More on Data Analysis

Data Analysis is a very important topic in modern life sciences. I offer thus three elective
courses on data analysis (all given in English, providing theoretical concepts and
practical hands on experience in the computer lab).

• Efficient Microarray Data Analysis with R and FSPMA (793.403) 1.0 HRS SS 2009 This is a
two day blocked lecture (18th and 19th of May) which will be held in the Computer
Lab in the 6th floor. This lecture will be moved to WS and should happen in WS
09/10 again. See details in BLIS - registration is still open.

• Neural Networks and Pattern Recognition in Bioinformatics (793.404) 2.0 WS (planned for WS
2009/2010 - theoretical part and MatLab based practical in the computer lab, no
BLIS entry yet).

• Bayesian Data Analysis in the Life Sciences (793.402) 3.0 HRS (will be moved from WS to
SS thus SS 2010). This lecture consists of a theoretical part and a 3 days blocked
MatLab based practical in the computer lab (see BLIS).
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Bayesian Inference

Thomas Bayes (1701 - 1763)

Occam’s Razor built in!
Two important conse-
quences for “learning from
data”. Inference based on a
decision theoretic framework

p(I|D) = p(D|I)p(I)
p(D)

1) Revise beliefs by
Bayes theorem

αopt = argmaxα < u(α) > , where

< u(α) >=
∫

G
u(α, I)p(I|D)dI.

2) Decisions by max-
imising expected utility
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Bayesian Inference

Thomas Bayes (1701 - 1763)

Occam’s Razor built in!
Two important conse-
quences for “learning from
data”. Inference based on a
decision theoretic framework
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App.: Bayesian Dice Model - Posterior

Multiplying prior and likelihood and renormalising
gives the posterior distribution over π as the
result of Bayesian inference of the dice model:

p(π|D) =
1

p(D)

Γ(
∑6

k=1 αk)
∏6

k=1 Γ(αk)

6∏

k=1

παk+nk−1
k

where p(D) =
∫

π1,..,π6

p(π,D)dπ denotes the
marginal likelihood, which is useful for model
selection.
What is the functional form of the marginal likelihood ?
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App.: Bayesian Dice Model - Prior
We typically use a conjugate prior: a convenient
choice to remain within a functional family which
is a known distribution. The Multinomial suggests
a Dirichlet prior over π:

p(π) =
Γ(
∑6

k=1 αk)
∏6

k=1 Γ(αk)

6∏

k=1

παk−1
k

Γ(α) =
∫∞

0
xα−1 exp(−x)dx is known as gamma function.

Write the definition of Γ(α) down! You will need it later during the lecture!

The αk are hyper parameters of our model.
What is their logical meaning?
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App.: Bayesian Dice Model - Likelihood
Goal: inferring probabilities observing sides of a
dice, i.e. π = {π1, .., π5, 1 −

∑5
k=1 πk}

Data: N observations from rolling the dice.

We need a likelihood function:
Throwing the dice once results in a multinomial
one distribution over sides, i.e.
P (In|π) =

∏6
k=1 π

δ(In=k)
k , where In ∈ {1, .., 6}.

Independence assumption − > likelihood:
p(D|π) =

∏

n P (In|π), where D = {I1, ..., IN}
denotes the N outcomes.
What is the final expression of the likelihood?
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App.: Horse Betting ctd.

Calculate expected utility
u(α) =

∑

I u(α, I)P (I|D):

bet “A” bet “B” no bet

0.7xrA 0.3xrB x

Maximise expected utility!

case I II III

rA 1.4 1.9 1.3

rB 3.2 2.5 4.5

What are your decisions?

Can we earn money?

0 100 200 300 400 500 600 700 800 900 1000
500

1000

1500

2000

2500

3000
Probabilities for scenarios : [0.9, 0.05, 0.05]

Nr. of bets analysed

F
un

ds
 o

ve
r 

be
ts

Only 10% of all bets are played
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jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 67/67

App.: Applied Bayesian Decision Theory

Horse betting: bet x; choice α; uncertain
outcome of race I. Bookmakers “odds” rA and rB

(one + odds ratio) imply utility function u(α, I):

α\I “A” wins “B” wins
bet “A” xrA 0

bet “B” 0 xrB

no bet x x

Need probability of I = [A, B] i.e. respective
horse wins. From previous observations (races)
D: P (I = A|D) = 0.7 and P (I = B|D) = 0.3.
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App.: Iterative Inference

Given prior counts {α1, ..αk} and data sets D1 = {I1, ..., IN}

and D2 = {IN+1, ..., IN+M}, using p(π|D1) as prior for D2

will result in the same posterior p(π|D1,D2) we get from the
original prior and the pooled data D = {I1, .., IN+M}:

p(π|D1) =
Γ(
∑

k(αk + nk))
∏

k Γ(αk + nk)

∏

k

παk+nk−1
k

p(π|D1,D2) =
Γ(
∑

k(αk + nk + mk))
∏

k Γ(αk + nk + mk)

∏

k

παk+nk+mk−1
k

Since nk + mk is the overall number of observations of side
k this is equivalent to p(π|D).
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