
Good Biological Practise
Requires to match data analysis (sometimes
advanced methods do not consider biological
needs) to the application domain.
Example: determine functional genes.

What’s wrong with using SVM (support vector machine, a powerful classifier) and some
greegy search to select some optimal gene set for cancer predition and implying that this
points to functionally important genes?

1) SVM does typically not outperform a much simpler linear classifier using a single
gene.

2) Greedy search provides some set working well for the classification task but certainly
without any claim for completeness

3) The gene set provides no ranking of functionally important genes.

The otherwise useful approach (as a diagnostic
tool) fails answering the biological question.
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Good Analysis Practise
Requires to match data analysis (sometimes
simple is too simplistic) to the application domain.
Example: Proove hypothetical genes by measurements.

What’s wrong with using an RNA mix of K biological states, hybridising N arrays and
declaring all genes as verified, if n < N arrays show expression above a threshold δ?

1)Motivation of n - why n = 6 and not one more or less?

2)Motivation of δ - how is it specified?

3)We know a-priori that certain genes (e.g. regulators) show much smaller expression
than others and are sometimes only involved in a few processses. The required
expression level and dilution will bias the proof towards highly expressed and often used
genes!

Data analysis does not fit the objective. − >
Benchmark your ideas! (e.g. Do you produce
more false negatives among known regulators?)
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The Next Three Hours

• Good data analysis practise
• Why should you bother?
• Matrices and preliminaries for data analysis
• Data analysis
• Bayesian concepts
• Priors, likelihoods and inference
• Bayesian view of the t-test
• Summary and outlook
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Matrix Multiplication II

Kronecker (or tensor) Product:
C = A⊗B ∀n,m : Cn,m = an,mB

MatLab: >> C = kron(A,B);

Cn,m are submatrices of dimensions equal to B

C has thus nA + nB rows and mA +mB columns

The Kronecker product is associative:
A⊗ (B ⊗C) = (A⊗B)⊗C

Is it commutative?

Matrix product of a Kronecker poduct:
(A⊗B)(C ⊗D) = (AC)⊗ (BD)
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Matrix Multiplication I

Matrix Inner Product (A’s column no. equals B’s
row no.): C = AB ∀n,m : cn,m =

∑

i an,ibi,m
MatLab: >> C = A ∗B;
Associative and commutative?
Note: (AB)T = BTAT

However: (A+B)2 = A2 +AB +BA+B2

Hadamard Product (A, B equal size):
C = A ·B, ∀n,m : cn,m = an,mbn,m
MatLab: >> C = A. ∗B;
Associative and commutative?
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Matrix Operations

Transposition: B = AT , ∀n,m : bm,n = an,m
MatLab: >> B = A′;

Addition (A, B equal size):
C = A+B, ∀n,m : cn,m = an,m + bn,m
MatLab: >> C = A+ B;
Associative and commutative?

Matrix times constant:
B = λA ∀n,m : bn,m = λan,m
MatLab: >> B = lambda ∗ A;
Associative and commutative?
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Matrices
Important to simplify notation!
Definition n-dimensional Euclidian Space R

n:

R
n = R× R× · · · × R

︸ ︷︷ ︸

n times

− > Cartesian product

Definition of a matrix (n rows, m columns):

M =






m1,1 · · · m1,m
... . . . ...

mn,1 · · · mn,m




 = (m1, · · · ,mm) and mi ∈ R

n

MatLab: >> M = [[a, b, c]; [d, e, f ]; ...]; What are the mi?
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Diagonal and Identity Matrices

Diagonal matrix: A = diag(a1,1, .., an,n), defines a
matrix with the only non zero elements located
on the main diagonal
MatLab: >> A = diag(a); % places a into main diagonal of A

>> a = diag(A); % places main diagonal of A into a

Identity matrix: I = diag(1, .., 1)
neutral element of matrix multiplication:
IA = AI = A

MatLab: >> I = eye(n); % generates an [n× n]
identity matrix.
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Remarks Regarding Determinants

|A| = 0 implies that A is singular

|A| =
∏

n λn, where λn are the eigenvalues of A

if |A| is an upper or lower diagonal matrix:
|A| =

∏n
i=1 ai,i

Highschool math - recursive definition w.r.t j-th
row (works similarly for the i-th column):

|A| =
∑

i

(−1)i+jai,j|Ai,j|

|Ai,j | is the determinant of the submatrix when removing the j-th row and i-th column.
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Determinant of a Square Matrix

Determinant of a matrix:

|A| =
∑

all permutations of (1, .., n)

(−1)Φ(j1,..,jn)
n∏

i=1

ai,ji

where Φ(ji, .., jn) is the number of transpositions
(interchanging two numbers) required to
transform (1, ..n) into (j1, .., jn). This is a
consistent definition since the number of
transpositions is always even or odd!
MatLab: >> det(A)
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Square Matrices

Rank of a matrix r(A): number of linearly
independent columns (or rows, that’s the same)
of A.

Square matrix A is a square matrix if no. rows
equals no. cols, that is: n = m.

Square matrix A is non-singular if rank r(A) = n.
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Sherman-Morrison-Woodbury Formula

Data analysis sometimes (e.g. Kalman filter)
requires inverting matrices incrementally. We
know A−1 and have two [n× p] matrices U and
V with p � n and seek (A+UV T )−1. The
following matrix inversion lemma helps:

(A+UV T )−1 = A−1−A−1U(I+V TA−1U )−1V TA−1

Inversion then only requires inverting a [p× p]
matrix. For a column vector x, a further
simplification of (A+ xxT )−1 is possible. Why??
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Moore Penrose Pseudo Inverse

Inverting ill conditioned (close to singular) matrices involves
quantities close to machine precision. Results derived from
such inverse matrices result in large numerical errors.

Pracatical rule - never use matrix inversion, always use the
Moore Penrose pseudo inverse.

A+ = lim
δ→0

(ATA+ δI)−1AT

MatLab: >> A_plus = pinv(A);

If A square and not ill-conditioned:
A+A = A−1(AT )−1ATA = I
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Using Inverse Matrices

Consider:
Ax = b

with A square [n× n], then:

x = A−1b

Note that this type of operation is typically found
in many data analysis scenarios, e.g. in finding
least squares solutions.
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Inverse Matrix

If matrix A is non-singular, we get a non-singular
matrix B = A−1, such that, BA = AB = I.
Matrix B is the inverse of A

MatLab:>> B = A−1

Remarks: (A−1)T = (AT )−1 and
(AB)−1 = B−1A−1

Matrix A is orthonormal if ATA = I, hence
AT = A−1

Examples: projection to principal axis (PCA)
Permutation matrix P in every row and column one 1 entry, otherwise 0
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Matrix Functions

Scalar functions map vectors and matrices to R

a) Φ(x) S ∈ R
n 7→ R

b) Φ(A) S ∈ R
[n×m] 7→ R

a) Fourier synthesis, b) ‖A‖, quadratic form xTAx

Vector functions map vectors and matrices to R
q

c) f(x) S ∈ R
n 7→ R

q

d) f(A) S ∈ R
[n×m] 7→ R

q

c) linear projection Ax (parameter x), d) trA

Matrix functions map vectors and matrices to R
[q×p]

e) F (x) S ∈ R
n 7→ R

[q×p]

f) F (A) S ∈ R
[n×m] 7→ R

[q×p]

e) xxT (expand this!), f) the inverse matrix A
−1

The vec opeartor (stacking of column vectors), converts
matrix functions to vector functions f(A) = vec F (A).
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Model fitting II

We can then immediately write

lsd =
∑

n

(
yn − xT

nΘ
)2

= (XΘ− y)T (XΘ− y)

which contains no sums any more and is an
extremely convenient method for deriving model
fitting procedures and code for numerical tools
like MatLab.
MatLab:>> y_d = X ∗ theta− y;

>> LSD = y_d′ ∗ y_d;
two lines to be more efficient!
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Model fitting I

is, withthout giving this much thought, often done
by “minimising least squares differences”

Θ̂ = argminΘ

(
∑

n

(
yn − xT

nΘ
)2

)

Importance of thinking in terms of matrices:

X =






xT
1
...

xT
N




 and y =






y1
...

yN





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Matrices and Data Analysis

Just to make sure that you see the connection between matrices and data analysis, here
an example:

Assume N samples of k “input” measurements collected in
xn and one dependent variable yn, which we intend
modelling as a function f(xn,Θ) parameterised by Θ. This
type of modelling is called regression.
We can only move on deciding on a particular f(xn,Θ).
For simplicity we assume that the best guess of yn is
obtained as linear combination of xn. This allows writing:

yn =
∑

k

xn[k]Θ[k], or yn = xT
nΘ
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Exponential Function and Logarithm
Two important functions in data analysis are the
exponential function and the logarithm.

y = exp(x) and the inverse x = log(y)

Important Relations:

exp(a) exp(b) = exp(a+ b)

exp(a)

exp(b)
= exp(a− b)

(exp(a))n = exp(na)

log(ab) = log(a) + log(b)

log(
a

b
) = log(a)− log(b)

xα = exp(α log(x))
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Least Squares Optimum II
The first identification theorem gives now the
Jacobian matrix (actually a row vector):

DΦ(Θ) = 2(ΘTXT − yT )X

and thus the gradient:

∇Φ(Θ) = 2(XTXΘ−XTy).

The solution is thus:

XTXΘ̂ = XTy or Θ̂ = (XTX)−1XTy

Does this look familiar?
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Least Squares Optimum I
is, as previously discussed, obtained as

Θ̂ = argminΘ((XΘ− y)T (XΘ− y))

Analogous to high school optimisation, we get
the argminΘ by setting the gradient of
Φ(Θ) = ((XΘ− y)T (XΘ− y)) zero and solving
for Θ. Using e = (XΘ− y), we require the
differential d(eTe):

d(eTe) = (deT )e+ eT (de) = 2eT (de)

= 2(XΘ− y)TXdΘ
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Definition Differential

(c)
d (c;u)Φ

u

(x)Φ

c+uc

Φ
Derivative: Φ′(c) =

limu→0
Φ(c+u)−Φ(c)

u

implies a linear approximation of
Φ(x) at c:
Φ(c+ u) = Φ(c) + dΦ(c;u) + rc(u)

The differential dΦ(c;u) is the difference between
Φ(c) and Φ(c+ u) based on a linear expansion
around c.
First identification theorem: dΦ(c;u) = Φ′(c)u
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Avoiding Interation Ctd.
The initial Integral is therefore eqivalent to

βα

Γ(α)

d

dα

Γ(α)

βα

or

βα

Γ(α)

Γ′(α)βα + Γ(α) log(β)βα

β2α
=

Γ′(α)

Γ(α)
+ log(β)

and finally Ψ(α) + log(β), where Ψ is the
digamma function.

jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 28/74

Example for Avoiding Integration
An approximation technique useful for 1) leads in
many situations to the following integral:

∫ ∞

λ=0

log(|λ|)
βα

Γ(α)
λ(α−1) exp(−βλ)dλ

this is the expectation of log(λ) under a Gamma

distribution. Trick: log(λ)λ(α−1) = d
dα
λ(α−1), we solve:

βα

Γ(α)

d

dα

∫ ∞

λ=0

λ(α−1) exp(−βλ)
︸ ︷︷ ︸

1/normalisation constant !!
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Integrals
Bayesian data analysis is inherently coupled with solving
integrals. There are two ways dealing with those:

1) Solve either exact or approximate versions of the
integral analytically.
2) Solve by Monte Carlo Integration, i.e. by

f(x) =

∫

Θ

f(x;Θ)p(Θ)dΘ ≈
1

N

N∑

n=1

f(x;Θn),

where Θn ∼ p(Θ).
1) has the disadvantage of being analytically more challenging and often requiring
systematic approximations. solutions are though computationally much less involved than 2).

The general rule for 1) is avoiding integration by transformations to known integrals.

jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 26/74

Gamma and Digamma Functions

that occur occasionally in Bayesian data
analysis. Commonality: only implicit definitions
with numerical implementations in most
numerical packages.

Γ(α) =

∫ ∞

0

xα−1 exp(−x)dx

is known as gamma function. A related function is
the digamma function

Ψ(α) =
d

dx
log(Γ(x))|x=α =

Γ′(α)

Γ(α)
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Why Bother With Data Analysis?

Moore’s Law:
PC 1984 5 MB Hard Drive
PC 2007 2 TB Hard Drive (4*500 GB) ≈ 400 Euro

How much paper on one PC in 2007 assuming 10.000
(single byte) characters per page ?
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Essential Rules of Probability Calculus

• If A and B represent mutually exclusive
events with probabilities P (A) and P (B), the
probability that either event occurs is
P (A) + P (B).

• The joint probability over A and B is:
P (A,B) = P (A)P (B|A) = P (B)P (A|B). If A
and B are independent we have
P (B|A) = P (B) and P (A|B) = P (A).

• Given P (A,B,C) = P (A)P (B|A)P (C|A,B),
we obtain P (C,A) =

∫

B
P (A,B,C)dB by

integration (here also referred to as
marginalisation).jump 2 TOC Computational Mathematics and Bioinformatics (851.305), Peter Sykacek – p. 31/74

Cumulative Distribution Function

An equivalent characterisation for univariate
random variables is provided by the so called
cumulative distribution function (cdf).
The cdf F (x) denotes
the probability that a re-
alisation of the random
variable is smaller than
x. F (a) is thus the prob-
ability P (x < a). xa

P(x<a)
1

0

− > the pdf p(x) = dF (ξ)
dξ

|ξ=x is the derivative of the cdf at x.
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Random Variable and PDF

Random variable: a non deterministic quantity where
repeated observations being different though generated
according to some overall property. Properties of random
variables are for example captured by an associated
probability density function (pdf).

The pdf allows deduc-
ing the probability that a
new realisation falls into
a particular set, P (x ∈

[a, b]) =
∫ b

x=a
p(x)dx. x

p(x)

a b
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What About Data Generation?

Medical monitoring 1:
20 channels EEG+physiological signals 8 hours sleep at 200 Hz and 16 Bit :
20 ∗ 8 ∗ 3600 ∗ 200 ∗ 2 ≈ 230, 4106 byte ≈ 250 MB.
A single sleep lab with 8 recording units, operated at nights only, will generate one TB in
just over a year.

Medical monitoring 2:
An FMRI scanner, 1dm3 volume, 10s temporal and 1mm3 spatial resolution, 16 bit.
One scanner generates 106 ∗ 360 ∗ 2 byte ≈ 720 MB per hour which fills 1 TB in about 58
days.

High throughput molecular biology:
A small lab produces up to 12 slides per 24 hours. One slide can contain up to 30.000

probes with ≈ 300 pixels/probe at 16 bit. Since we scan the entire array this is about 240
MB per 24 hours.

Such data can for two reasons not be analysed manually:
Amount and “Noise”
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Medical monitoring 1:
20 channels EEG+physiological signals 8 hours sleep at 200 Hz and 16 Bit :
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Why Bother With Data Analysis?

Moore’s Law:
PC 1984 5 MB Hard Drive
PC 2007 2 TB Hard Drive (4*500 GB) ≈ 400 Euro

How much paper on one PC in 2007 assuming 10.000
(single byte) characters per page ?

It is actually a stack of paper 20 km high!
2 TB ≈ 2 ∗ 1012 byte
= 2 ∗ 108 pages, assuming 1000 pages = 10 cm
a stack 2 ∗ 105 ∗ 10 cm = 2 ∗ 104 m = 20 km
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Why Understand Data Analysis?
Result = Data + Model!

Linear discriminant and principle component analysis can
provide orthogonal projections of the same data.

PCA
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Example: Metabolomics
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Example: Sleep EEG
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Manual Analysis Task

Which sine wave has the correct phase?
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First Scenario

Suppose a life science experiment provided
some noisy data Z = {(x1, y1), ..., (xN , yN )}.
Note: xn possibly multivariate i.e. vectors.

Based on Z, we have an inference problem of
finding an “optimal” relation between x and y:

p(y|x) = f(x;θ) + ε(λ)
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Two Scenarios in Applied Life Sciences

1. Given measurements xn and some
corresponding dependent information yn, we
might ask: How are they related?

2. Given two sets of measurements xn and zn,
we might ask: Which of those are closer
related to some corresponding dependent
information yn?

− > two instances of “inference” commonly
found in applied life sciences.
We do for the moment ignore the problem where we have only some measurements xn

and ask how they are structured.
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corresponding dependent information yn, we
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Assessing Model Parameters

Idea: subtract the deterministic part from yn:

εn = yn − f(xn;θ)

For convenience introduce X = {x1, ...,xN} and
D = {y1, ..., yN}. Assuming that εn are i.i.d
samples, we get the likelihood function:

p(D|θ, λ,X ) =
∏

n

p(yn|θ, λ,xn)

which is a suitable objective function to be
maximized for θ and λ.
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Inference

Parameter Inference:

Implies knowing f(x;θ) and the noise model ε(λ)
up to unknown parameters (θ and λ) which we
will be inferring from data.

Model Inference:

A more realistic assumption is that the model
class is unknown and we will be
inferring model class and parameters.
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First Scenario

Suppose a life science experiment provided
some noisy data Z = {(x1, y1), ..., (xN , yN )}.
Note: xn possibly multivariate i.e. vectors.

Based on Z, we have an inference problem of
finding an “optimal” relation between x and y:

p(y|x) = f(x;θ) + ε(λ)

Noise requires a deterministic and a random
component.

− > Inherent uncertainty, y is a random variable!
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A Major Problem
True model - linear regression, Gaussian noise:

p(y|x) = f(x;θ) + ε(λ)

f(x;θ) = [1,xT ]θ and ε(λ) = N (ε; 0, λ), with λ
denoting “precision” (i. e. inverse variance).
Finite sample size and different model classes:
What is the maximum of the likelihood?

Think “phone book”: Perfect memorizing of all yn,
modelling error 0, λ− > ∞, p(D|θ, λ,X )− > ∞.

− > likelihood unsuitable objective for model inference!
Why is memorizing useless?
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Classification and Sampling Paradigm

P (yn|xn) =
P (yn)p(xn|yn)

p(xn)

− > Bayes theorem suggests that we can also model class
priors P (yn) and class conditional densities p(xn|yn).

P(y="red"|x)

0

1

Advantage: a useful density model, disadvantage: more complicated
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Likelihood and Classification

“Classification” often used synonymously for regression
with discrete outcomes. Likelihood of regression model:

P (D|X ;θ) =
∏

n

P (yn|xn,θ)

To enforce
∑

yn
P (yn|xn,θ) is 1, we apply a suitable output

transformation, e.g. the cdf of the logistic distribution:

P (yn|x
T
nθ) =

1

1 + exp((2yn − 1)xT
nθ)

Probabilities are certainty measures about classes to avoid ignorant decisions:
Surgeon: Amputate or not?
Nurse: The SVM says +1.
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Likelihood and Linear Regression

Assuming N samples, we have:

p(yn|xn;θ, λ) = (2π)−0.5λ0.5 exp(−0.5λ(yn − xT
nθ)

2) and

p(D|X ;θ, λ) = (2π)−
N
2 λ

N
2 exp(−0.5λ

∑

n

(yn − xT
nθ)

2)

Taking the log, we get the log likelihood:

llh =
N

2
(log(λ)−log(2π))−0.5λ(y−Xθ)T (y−Xθ)

which, if we consider maximising for θ only, is a familiar expression.

− > minimising least squares assumes Gaussian noise!
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Bayesian Inference

Thomas Bayes (1701 - 1763)

Occam’s Razor built in!
Two important conse-
quences for “learning from
data”. Inference based on a
decision theoretic framework
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Occam’s Razor

We implicitly apply Occam’s Razor

William of Occam (or Ockham)
(1288 - 1348)

Entia non sunt multiplicanda sine necessi-

tate: Entities are not to be multiplied
without necessity.
Interpretation: One should always
opt for an explanation in terms of the
fewest possible number of causes,
factors, or variables.

Material from http://en.wikipedia.org/wiki/William_of_Ockham .
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Guess the Correct “Model”

Model comparison requires penalties on top of likelihood!
(AIC, BIC, etc.)
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Guess the Correct “Model”
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A Bayesian Dice Model - the Likelihood
Goal: inferring probabilities observing sides of a
dice, i.e. π = {π1, .., π5, 1−

∑5
k=1 πk}

Data: N observations from rolling the dice.

We need a likelihood function:
Throwing the dice once results in a multinomial
one distribution over sides, i.e.
P (In|π) =

∏6
k=1 π

δ(In=k)
k , where In ∈ {1, .., 6}.

Independence assumption − > likelihood:
p(D|π) =

∏

n P (In|π), where D = {I1, ..., IN}
denotes the N outcomes.
What is the final expression of the likelihood?
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A Bayesian Dice Model - the Likelihood
Goal: inferring probabilities observing sides of a
dice, i.e. π = {π1, .., π5, 1−

∑5
k=1 πk}

Data: N observations from rolling the dice.
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Bayesian Inference

Thomas Bayes (1701 - 1763)

Occam’s Razor built in!
Two important conse-
quences for “learning from
data”. Inference based on a
decision theoretic framework

p(I|D) = p(D|I)p(I)
p(D)

1) Revise beliefs by
Bayes theorem

αopt = argmaxα < u(α) > , where

< u(α) >=
∫

G
u(α, I)p(I |D)dI .

2) Decisions by max-
imising expected utility
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Bayesian Inference

Thomas Bayes (1701 - 1763)

Occam’s Razor built in!
Two important conse-
quences for “learning from
data”. Inference based on a
decision theoretic framework

p(I|D) = p(D|I)p(I)
p(D)

1) Revise beliefs by
Bayes theorem
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Applied Bayesian Decision Theory

Horse betting: bet x; choice α; uncertain
outcome of race I. Bookmakers “odds” rA and rB
(one + odds ratio) imply utility function u(α, I):

α\I “A” wins “B” wins
bet “A” xrA 0

bet “B” 0 xrB

no bet x x

Need probability of I = [A,B] i.e. respective
horse wins. From previous observations (races)
D: P (I = A|D) = 0.7 and P (I = B|D) = 0.3.
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Iterative Inference

Given prior counts {α1, ..αk} and data sets D1 = {I1, ..., IN}

and D2 = {IN+1, ..., IN+M}, using p(π|D1) as prior for D2

will result in the same posterior p(π|D1,D2) we get from the
original prior and the pooled data D = {I1, .., IN+M}:

p(π|D1) =
Γ(
∑

k(αk + nk))
∏

k Γ(αk + nk)

∏

k

παk+nk−1
k

p(π|D1,D2) =
Γ(
∑

k(αk + nk +mk))
∏

k Γ(αk + nk +mk)

∏

k

π
αk+nk+mk−1
k

Since nk +mk is the overall number of observations of side
k this is equivalent to p(π|D).
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Bayesian Dice Model: the Posterior

Multiplying prior and likelihood and renormalising
gives the posterior distribution over π as the
result of Bayesian inference of the dice model:

p(π|D) =
1

p(D)

Γ(
∑6

k=1 αk)
∏6

k=1 Γ(αk)

6∏

k=1

παk+nk−1
k

where p(D) =
∫

π1,..,π6
p(π,D)dπ denotes the

marginal likelihood, which is useful for model
selection.
What is the functional form of the marginal likelihood ?
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Bayesian Dice Model - the Prior
We typically use a conjugate prior: a convenient
choice to remain within a functional family which
is a known distribution. The Multinomial suggests
a Dirichlet prior over π:

p(π) =
Γ(
∑6

k=1 αk)
∏6

k=1 Γ(αk)

6∏

k=1

παk−1
k

Γ(α) =
∫∞

0
xα−1 exp(−x)dx is known as gamma function.

Write the definition of Γ(α) down! You will need it later during the lecture!

The αk are hyper parameters of our model.
What is their logical meaning?
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Inferring a Univariate Gaussian
Data D = {x1, .., xN}: drawn from a univariate
Gaussian with mean µ and precision λ.
Goal: inferring µ and λ, i.e. apply Bayes theorem:

p(µ, λ|D, g, h, l0) =
p(D|µ, λ)p(µ|l0)p(λ|g, h)

p(D|g, h, l0)

What is the precision?
Univariate Gaussian distribution:

p(xn|µ, λ) = (2π)−
1

2 |λ|
1

2 exp
(
−0.5λ(xn − µ)2

)

and Likelihood: p(D|µ, λ) =
∏

n p(xn|µ, λ)
Functional form of the likelihood?
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Inferring a Univariate Gaussian
Data D = {x1, .., xN}: drawn from a univariate
Gaussian with mean µ and precision λ.
Goal: inferring µ and λ, i.e. apply Bayes theorem:

p(µ, λ|D, g, h, l0) =
p(D|µ, λ)p(µ|l0)p(λ|g, h)

p(D|g, h, l0)

What is the precision?
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Horse Betting ctd.

Calculate expected utility
u(α) =

∑

I u(α, I)P (I|D):

bet “A” bet “B” no bet

0.7xrA 0.3xrB x

Maximise expected utility!

case I II III

rA 1.4 1.9 1.3

rB 3.2 2.5 4.5

What are your decisions?

Can we earn money?

0 100 200 300 400 500 600 700 800 900 1000
500

1000

1500

2000

2500

3000
Probabilities for scenarios : [0.9, 0.05, 0.05]

Nr. of bets analysed

F
un

ds
 o

ve
r 

be
ts

Only 10% of all bets are played
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Horse Betting ctd.

Calculate expected utility
u(α) =

∑

I u(α, I)P (I|D):

bet “A” bet “B” no bet

0.7xrA 0.3xrB x

Maximise expected utility!

case I II III

rA 1.4 1.9 1.3

rB 3.2 2.5 4.5

What are your decisions?
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Priors ctd.

Gaussian defined for x ∈ <

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Gaussian pdf µ=0 λ=1

Gamma defined for x ∈ <|x > 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5
Gamma distribution for various values of g and h

g: 0.50 h:0.10
g: 0.50 h:1.10
g: 0.50 h:2.10
g: 1.00 h:0.10
g: 1.00 h:1.10
g: 1.00 h:2.10
g: 1.50 h:0.10
g: 1.50 h:1.10
g: 1.50 h:2.10
g: 2.00 h:0.10
g: 2.00 h:1.10
g: 2.00 h:2.10
g: 2.50 h:0.10
g: 2.50 h:1.10
g: 2.50 h:2.10
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Priors ctd.

Gaussian defined for x ∈ <

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Gaussian pdf µ=0 λ=1

5
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Priors over µ and λ

Likelihood:

p(D|µ, λ) = (2π)−
N
2 |λ|

N
2 exp

(

−0.5λ(Nµ2 − 2µ
∑

n

xn +
∑

n

x2
n)

)

Conjugate prior for µ ?

Priors:
p(µ|l0) = (2π)−0.5|l0|0.5 exp(−0.5l0µ

2), zero mean
Gaussian with precision l0 = γλ “g-prior”
p(λ|g, h) = hg

Γ(g)|λ|
(g−1) exp(−hλ), Gamma

distribution with shape g and inverse scale h.
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Priors over µ and λ

Likelihood:

p(D|µ, λ) = (2π)−
N
2 |λ|

N
2 exp

(

−0.5λ(Nµ2 − 2µ
∑

n

xn +
∑

n

x2
n)

)

Conjugate prior for µ ?
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Further Analysis of p(D, µ|g, h, γ)

p(D, µ|g, h, γ) = (2π)−
N+1

2
hg

Γ(g)
|γ|

1
2 Γ

(

N + 1

2
+ g

)

×

(

h+ 0.5
((

∑

n

x2
n −

(
∑

n xn)2

γ +N

))

)

−

(

N+1

2
+g

)

×






1 +

0.5(γ +N)
(

µ−
∑

n
xn

γ+N

)2

h+ 0.5
((

∑

n x2
n −

(
∑

n
xn)2

γ+N

))







−

(

N+1

2
+g

)

Compare with student-t distribution:

p(µ|θ, κ, ν) =
Γ
(

ν+1
2

)

Γ
(

ν
2

) |κ|0.5(νπ)−0.5

(

1 +
(µ− θ)2κ

ν

)−
ν+1

2

− > last factor proportional to student-t distrbution over µ
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Integrating out λ

We need to solve:
∫ ∞

λ=0

|λ|(
N+1

2
+g−1) exp(−λβ0)dλ

Any ideas?

Setting x = λβ0, and dλ = dx
β0

we convert to a Gamma type
integral Γ(α) =

∫∞

0
xα−1 exp(−x)dx and get:

p(D, µ|g, h, γ) = (2π)−
N+1

2
hg

Γ(g)
|γ|

1
2 Γ

(

N + 1

2
+ g

)

×

(

h+ 0.5
((

∑

n

x2
n −

(
∑

n xn)2

γ +N

))

+ 0.5(γ +N)
(

µ−

∑

n xn

γ +N

)2
)

−

(

N+1

2
+g

)
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Integrating out λ

We need to solve:
∫ ∞

λ=0

|λ|(
N+1

2
+g−1) exp(−λβ0)dλ

Any ideas?
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Prior Times Likelihood
p(D, µ, λ|g, h, γ) = p(D|µ, λ)p(µ|λγ)p(λ|g, h)

= (2π)−
N+1
2

hg

Γ(g)
|γ|

1
2 |λ|(

N+1
2

+g−1)

× exp
(

−λ
(

h+ 0.5
(

(γ +N)µ2 − 2µ
∑

n

xn +
∑

n

x2
n

)))

= (2π)−
N+1
2

hg

Γ(g)
|γ|

1
2 |λ|(

N+1
2

+g−1)

× exp
(

−λ
(

h+ 0.5
((∑

n

x2
n −

(
∑

n xn)
2

γ +N

))))

× exp
(

−λ0.5(γ +N)
(

µ−

∑

n xn

γ +N

)2)

For normalisation, integrate over λ and µ.
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Posterior Dependency on Data Size

Prior settings: g = 1.2, h = 0.9 and γ = 0.1
Inference From 0 Data Points

mean
pr

ec
is

io
n

−5 0 5

1

2

3

4

5
Inference From 5 Data Points

mean

pr
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n

−5 0 5

1

2

3

4
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Inference From 10 Data Points

mean
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ec
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io

n

−5 0 5

1
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3

4

5
Inference From 50 Data Points
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is
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n

−5 0 5

1

2

3

4

5
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A MatLab Implementation

Note the implementation on the log scale!
fu nction [mrgllh]=prcmn_gauss_mrglh(data, g, h, gam)

% function [mrgllh]=prcmn_gauss_mrglh(data, g, h, gam)

% calculates the log marginal likelihood of inferring a

% univariate Gaussian under a g-prior like scenario.

%

% (C) P. Sykacek 2007 <peter@sykacek.net>

data=data(:);

ndat=length(data);

sum_x_sqr=sum(data.ˆ2);

sqr_sum_x=sum(data).ˆ2;

mrgllh=-(ndat+1)/2 * log(2 * pi) + g * log(h) - gammaln(g) + 0.5 * log(gam);

mrgllh=mrgllh-((ndat+1)/2+g) * log(h+0.5 * (sum_x_sqr-sqr_sum_x/(ndat+gam)));

mrgllh=mrgllh+gammaln(ndat/2+g)-0.5 * (log(ndat+2 * g)+log(ndat+gam)-...

log(2 * h+sum_x_sqr-sqr_sum_x/(ndat+gam)));

mrgllh=mrgllh+0.5 * (log(ndat+2 * g)+log(pi));
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Marginal Likelihood and Posterior

p(D|g, h, γ) = (2π)−
N+1

2
hg

Γ(g)
|γ|

1
2

(

h+ 0.5
((

∑

n

x2
n −

(
∑

n xn)2

γ +N

))

)

−

(

N+1

2
+g

)

×Γ

(

N + 2g

2

)

∣

∣

∣

∣

∣

(N + 2g)(N + γ)

2h+
∑

n x2
n −

(∑

n xn

)2
/(N + γ)

∣

∣

∣

∣

∣

−0.5

((N + 2g)π)0.5

p(µ, λ|D, g, h, γ) =

(

h+ 0.5
((

∑

n

x2
n −

(
∑

n xn)2

γ +N

))

)

(

N+1

2
+g

)

×
1

Γ
(

N+2g
2

)

√

((N + 2g)π)

∣

∣

∣

∣

∣

(N + 2g)(N + γ)

2h+
∑

n x2
n −

(∑

n xn

)2
/(N + γ)

∣

∣

∣

∣

∣

0.5

×|λ|(
N+1

2
+g−1) exp

(

−λ
(

h+ 0.5
(

(γ +N)µ2 − 2µ
∑

n

xn +
∑

n

x2
n

)))
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Analysis ofp(D, µ|g, h, γ) ctd.
Comparing coefficients:

θ =

∑

n xn

N + γ
, ν = N + 2g

κ =
(N + 2g)(N + γ)

2h+
∑

n x2
n −

(
∑

n xn

)2
/(N + γ)

p(D, µ|g, h, γ) = (2π)−
N+1

2
hg

Γ(g)
|γ|

1
2 Γ

(

N + 1

2
+ g

)

×

(

h+ 0.5
((

∑

n

x2
n −

(
∑

n xn)2

γ +N

))

)

−

(

N+1

2
+g

)

×
Γ
(

N+2g
2

)

Γ
(

N+2g+1
2

)

∣

∣

∣

∣

∣

(N + 2g)(N + γ)

2h+
∑

n x2
n −

(
∑

n xn

)2
/(N + γ)

∣

∣

∣

∣

∣

−0.5

((N + 2g)π)0.5

×
Γ
(

ν+1
2

)

Γ
(

ν
2

) |κ|0.5(νπ)−0.5

(

1 +
(µ− θ)2κ

ν

)−
ν+1

2

Any ideas how to get the marginal likelihood p(D|g, h, γ) ?
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Typical Behaviour

Plot of (approximate) log marginal likelihood in a
binary regression problem (XOR-structure).

1 2 3 4 5 6 7
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XOR−problem in 2 dimensions
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Bayesian Model Selection III

If we have K models, we may chose P (I) = 1
K

to
reflect “ignorance”.

Model selection will choose model I with the
largest posterior probability.

For equal priors, we select the model with the
largest marginal likelihood. Unlike maximising
the likelihood this quantity does not necessary
lead to the most complex model winning!

If several model classes are equally probable, we
should use P (I|D) for model averaging.
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Bayesian Model Selection II
Reasoning about different model classes I:

P (I|D) =
P (I)p(D|I)

p(D)

Note: p(D|I) is just the normalisation constant
from parameter inference.

The above denominator is the normalisation
constant p(D) =

∑

I P (I)p(D|I).

Renormalising the maginal likelihood of model class I

multiplied by its prior probability gives thus the posterior
probability of model class I under the data D.
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Bayesian Model Selection I

All aspects of Bayesian inference:

Parameter inference:

p(θ|D, I) =
p(D|θ, I)p(θ|I)

p(D|I)

Note: p(D|I) =
∫

θ p(D|θ, I)p(θ|I)dθ

Novel part: By including an indicator I, we made
the model class explicit.
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Bayesian "T-Test" Applied

Priors: g = 1.2, h = 0.9, γ = 0.1 and P (I) = 0.5
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Marginal Likelihoods and P (I|D)
Zero mean Gaussian:

p(D|g, h, I = 0) =
hg

Γ(g)
(2π)−

n

2

(

h+ 0.5
∑

n

x2
n

)

−(N

2
+g)

Γ

(

N

2
+ g

)

Full Gaussian (from previous calculations):

p(D|g, h, γ, I = 1) = (2π)−
N+1

2
hg

Γ(g)
|γ|

1
2

(

h+ 0.5
((

∑

n

x2
n −

(
∑

n xn)2

γ +N

))

)

−

(

N+1

2
+g

)

×Γ

(

N + 2g

2

)

∣

∣

∣

∣

∣

(N + 2g)(N + γ)

2h+
∑

n x2
n −

(∑

n xn

)2
/(N + γ)

∣

∣

∣

∣

∣

−0.5

((N + 2g)π)0.5

P (I|D) from log marginal likelihoods, where log(p(D, I)) = log(p(D|I)) + log(p(I)):

P (I = i|D) =
1

1 +
∑

j 6=i exp (log(p(D, I = j))− log(p(D, I = j)))
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Zero Mean Gaussian Model

Likelihood:

p(D|λ) = (2π)−
n
2 |λ|

N
2 exp

(

−0.5λ
∑

n

x2n

)

and Gamma prior over λ:

p(λ|g, h) =
hg

Γ(g)
λg−1 exp(−λh)

Derive the marginal likelihood!
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The Bayesian Version of a Paired T-Test

The classical paired t-test infers, whether some data are
unlikely under the null hypothesis of being a zero mean
Gaussian with unknown variance.

The Bayesian alternative is inferring the posterior
probabilities, whether a zero mean Gaussian (I = 0), or a
generic Gaussian (I = 1) are more probable under the
dataset.

We choose uninformative priors P (I = 0) = P (I = 1) = 0.5

and need in addition the marginal likelihoods. As we know
the marginal likelihood of the generic Gaussian already, we
need only consider the zero mean Gaussian model.
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Outlook

This lecture captured only very simple models that gave
rise to analytically tractable calculations.
For models which include nonlinearities the integrals can
not be solved analytically and explicit (exact) solutions do
not exist.
If you are interested in advanced Bayesian methods that
allow solving more complex problems you are warmly
invited to attend 793.402 “Bayesian Data Analysis in the
Life Scienes”. It will cover advanced aspects and include
practical analysis sessions (3*6 hrs theory and 3 days
blocked in the PC lab).
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Summary

Model inference is based on Bayes theorem:

P (θ|D) =
p(θ)p(D|θ)

p(D)

and marginalisation:

P (I|D) =

∫

θ
p(D, θ|I)dθP (I)

∑

I

∫

θ
p(D, θ|I)p(I)dθ

Inference results are either decisions after maximising
expected utilities or posteriors summarising all uncertainty.
An important advantage of Bayesian statistics is to provide
a consistent framework for all inference tasks.
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