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The Next Three Hours

« Why should you bother?
Introduction to Bayesian data analysis

Priors, likelihoods and inference

Bayesian view of the t-test

Bayesian linear models

Summary and outlook




Why Bother?

Moore’s Law:
PC 1984 5 MB Hard Drive

PC 2007 2 TB Hard Drive (4*500 GB) ~ 400 Euro

How much paper on one PC in 2007 assuming 10.000
(single byte) characters per page ?




Why Bother?

Moore’s Law:
PC 1984 5 MB Hard Drive

PC 2007 2 TB Hard Drive (4*500 GB) ~ 400 Euro

How much paper on one PC in 2007 assuming 10.000
(single byte) characters per page ?

It Is actually a stack of paper 20 km high!
2 TB ~ 2% 10" byte

— 2 % 10% pages, assuming 1000 pages = 10 cm

a stack 2 * 10° * 10 cm = 2 % 10* m = 20 km
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What About Data Generation?

Medical monitoring 1:
20 channels EEG+physiological signals 8 hours sleep at 200 Hz and 16 Bit :

20 * 8 * 3600 * 200 * 2 ~ 230, 410° byte ~ 250 MB.
A single sleep lab with 8 recording units, operated at nights only, will generate one TB in

just over a year.

Computational Mathematics and Bioinformatics (851.305). Peter Svkacek — p. 4/49



What About Data Generation?

Medical monitoring 1:

20 channels EEG+physiological signals 8 hours sleep at 200 Hz and 16 Bit :

20 * 8 * 3600 * 200 * 2 ~ 230, 410° byte ~ 250 MB.

A single sleep lab with 8 recording units, operated at nights only, will generate one TB in
just over a year.

Medical monitoring 2:

An FMRI scanner, 1dm3 volume, 10s temporal and 1mm?3 spatial resolution, 16 bit.

One scanner generates 10° x 360 * 2 byte ~ 720 MB per hour which fills 1 TB in about 58
days.
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What About Data Generation?

Medical monitoring 1:

20 channels EEG+physiological signals 8 hours sleep at 200 Hz and 16 Bit :

20 * 8 * 3600 * 200 * 2 ~ 230, 410° byte ~ 250 MB.

A single sleep lab with 8 recording units, operated at nights only, will generate one TB in
just over a year.

Medical monitoring 2:

An FMRI scanner, 1dm3 volume, 10s temporal and 1mm?3 spatial resolution, 16 bit.

One scanner generates 10° x 360 * 2 byte ~ 720 MB per hour which fills 1 TB in about 58
days.

High throughput molecular biology:

A small lab produces up to 12 slides per 24 hours. One slide can contain up to 30.000
probes with =~ 300 pixels/probe at 16 bit. Since we scan the entire array this is about 240
MB per 24 hours.

Clearly such ammounts can not be analysed manually.
Statistics provides means to do that and thus to secure

iour '|ob!
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Why Understand Statistics?

Result = Data + Model!

Linear discriminant and principle component analysis can
provide orthogonal projections of the same data.

PCA

LDA
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Two Scenarios in Applied Life Science

1. Given measurements x,, and some
corresponding dependent information ,,, we
might ask: How are they related?
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related to some corresponding dependent
iInformation y,,?




Two Scenarios in Applied Life Science

1. Given measurements x,, and some
corresponding dependent information ,,, we
might ask: How are they related?

2. Given two sets of measurements x,, and z,,,
we might ask: Which of those are closer
related to some corresponding dependent
iInformation y,,?

— > two Instances of “inference” commonly
found in applied life sciences.

We do for the moment ignore the problem where we have only some measurements x,,

and ask how they are structured.

Computational Mathematics and Bioinformatics (851.305). Peter Svkacek — p. 6/49



Suppose a life science experiment provided
some noisy data Z = {(x1,41), -.., (N, yN) }-
Note: x,, possibly multivariate i.e. vectors.

Based on Z, we have an inference problem of
finding an “optimal” relation between x and v:

p(ylx) = [(x:0) +
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Suppose a life science experiment provided
some noisy data Z = {(x1,41), -.., (N, yN) }-
Note: x,, possibly multivariate i.e. vectors.

Based on Z, we have an inference problem of
finding an “optimal” relation between x and v:

p(ylx) = [(x:0) +

Noise requires a deterministic and a
component.

— > Inherent uncertainty, y is a random variable!
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Inference

Parameter Inference:

Implies knowing f(x; @) and the noise model ¢(\)
up to unknown parameters (@ and \) which we
will be inferring from data.
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Inference

Parameter Inference:

Implies knowing f(x; @) and the noise model ¢(\)
up to unknown parameters (@ and \) which we
will be inferring from data.

Model Inference:

A more realistic assumption is that the model
class is unknown and we will be
Inferring model class and parameters.
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Assessing Model Parameters

ldea: subtract the deterministic part from y,,:
€n = Yn — f(@n; 0)

For convenience introduce X = {xq, ..., xy} and
D = {1, ...,yn}. Assuming that ¢, are i.i.d
samples, we get the likelihood function:

p(DI6. X\, X) = ][ p(val6, ). z,)

which Is a suitable objective function to be
maximized for 8 and \.




A Major Problem

True model - linear regression, Gaussian noise:
plyle) = [(x:0)+

flx:0)=11.2"6 and , With A
denoting “precision” (I. e. Inverse variance).

Finite sample size and different model classes:
What is the maximum of the likelihood?

Think “phone book”: Perfect memorizing of all v,
modelling error 0, A— > oo, p(D|0, A\, X)— > oc.

— > likelihood unsuitable objective for model inference!

Why is memorizing useless?




Guess the Correct “Model”




Guess the Correct “Model”

Model comparison requires putting external

“llkellhOOdl (AIC BIC etc)




Occam'’s Razor

We implicitly apply Occam’s Razor

William of Occam (or Ockham)
(1288 - 1348)

Entia non sunt multiplicanda sine necessi-
tate. Entities are not to be multiplied
without necessity.

Interpretation: One should always
opt for an explanation in terms of the
fewest possible number of causes,
factors, or variables.

Material from http://en.wikipedia.org/wiki/William_of Ockham
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Bayesian Inference

Thomas Bayes (1701 - 1763)

Occam’s Razor built in!
Two Important conse-
guences for “learning from

data”. Inference based on a
decision theoretic framework
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Bayesian Inference

Thomas Bayes (1701 - 1763)

Occam’s Razor built in!

Two Important conse-
guences for “learning from
data’. Inference based on a

decision theoretic framework

_ p(DlI)p{)

1) Revise beliefs by
Bayes theorem
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Bayesian Inference

Thomas Bayes (1701 - 1763)

Occam’s Razor built in!
Two Important conse-
guences for “learning from

data”. Inference based on a
decision theoretic framework
L p(DIDp(D) (opr = argmax, < ulo) >, where
p([’D) —  p(D) < u(a) >= [ u(a,I)p(I|D)dl.
1) Revise Dbeliefs by 2) Decisions by max-
Bayes theorem Imising expected utility
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A Bayesian Dice Model - the Likelihoot

Goal: inferring probabilities observing sides of a
dice, i.e. m = {my,..,m5, 1 — Zzzl T }
Data: N observations from rolling the dice.




A Bayesian Dice Model - the Likelihoot

Goal: inferring probabilities observing sides of a
dice, i.e. m = {my,..,m5, 1 — Zzzl T }
Data: N observations from rolling the dice.

We need a likelihood function:
Throwing the dice once results in a multinomial
one distribution over sides, I.e.

P(L|m) =TI, wg(]”:k), where [, € {1, ..,6}.

Independence assumption — > likelihood:
p(D|r) =11, P(I,|7), where D = {1, ..., In}
denotes the N outcomes.

What is the final expression of the likelihood?




Bayesian Dice Model - the Prior

We typically use a conjugate prior: a convenient
choice to remain within a functional family which

IS a known distribution. The Multinomial suggests
a Dirichlet prior over

/6
p(?T) _ (621’621 ak) Wl?k—l
..—[kzl F(ak) —1
= [;7 2% ! exp(—=z)dx is known as gamma function.

Write the definition of I'(«r) down! You will need it later during the lecture!

The o4 are hyper parameters of our model.
What is their logical meaning?
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Bayesian Dice Model: the Posterior

Multiplying prior and likelihood and renormalising
gives the posterior distribution over 7 as the
result of Bayesian inference of the dice model.

p(7|D) = (1 )Ill[Zk | Q) HW et —1

where p(D) = [ p(m, D)dr denotes the

marginal likelihood, which is useful for model
selection.
What is the functional form of the marginal likelihood ?




Iterative Inference

Given prior counts {ay, .., } and data sets D; = {4, ..., In}
and Dy = {Ini1,...., Intar}, USINg p(7|Dy) as prior for Dy
will result in the same posterior p(7|D;, D) we get from the
original prior and the pooled data D = {11, .., Ny}

P(Zk(ak +ny)) oty —1

p(m|Dy) =
(D) [ T + ng) k '
p(ﬂ"p D ) _ F(Zk(ak + Ny T mk)) ﬂ_ak—i—nk+mk—1
U T T (o e+ ) LF

Since n; + my 1S the overall number of observations of side
k this is equivalent to p(7|D).
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Applied Bayesian Decision Theory

Horse betting: bet x; choice «; uncertain
outcome of race /. Bookmakers “odds” 4, and rp
(one + odds ratio) imply utility function u(«, I):

a\ [l “A” wins  “B” wins
bet “A” TT A 0
bet “B” 0 Trp
no bet x x

Need probability of I = |A, B] i.e. respective
horse wins. From previous observations (races)
D: P(I = AD)=0.7and P(I = B|D) =0.3.




Horse Betting ctd.

Calculate expected utility
u(a) = ) yu(a, I)P(I|D):
bet “A” bet“B” no bet

0.7xr, 0.3xrpg x
Maximise expected utility!

case I 1l
A 14 19 1.3
"B 3.2 25 4.5

What are your decisions?
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Horse Betting ctd.

Calculate expected utility
uw(a) = > ;ula, I)P(I|D):
bet “A” bet“B” no bet

0.7xr, 0.3xrpg x
Maximise expected utility!

case I 1l
A 14 19 1.3

"B 3.2 25 4.5

What are your decisions?

Funds over bets

Can we earn money?

Probabilities for scenarios : [0.9, 0.05, 0.05]

3000

2500

2000

Only 10% of all bets are played

500 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Nr. of bets analysed
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Inferring a Univariate Gaussian

Data D = {x1,..,xx}: drawn from a univariate
Gaussian with mean . and precision .
Goal: inferring 1 and A, 1.e. apply Bayes theorem:

(D, M)p(pello)p(Alg, k)

P
p 9 )\ D? 9 h? l —
(1, AID, 9,1, o) o(Dlg. b, Io)

What is the precision?




Inferring a Univariate Gaussian

Data D = {z1,..,zy}: drawn from a univariate
Gaussian with mean . and precision .
Goal: inferring 1 and A, 1.e. apply Bayes theorem:

(D, M)p(pello)p(Alg, k)

P
AD, g, h,ly) =
plu, AID, g, 1, o) o(Dlg. b, Io)

What is the precision?
Univariate Gaussian distribution:

plaa|p, A) = (270) 7 | A2 exp (0.5 (z, — p1)?)

and Likelihood: p(D|u, A\) =11, p(xn|p, A)
Functional form of the likelihood?




Priors over ;. and \

Likelihood:
p(Dlp, A) = (27) "2 |A|Z exp (—0-5A(Nu2 20y Tty wi))

Conjugate prior for p ?
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Priors over ;. and \

Likelihood:

p(Dlp, \) = (2m) % [A[ 2 exp (—0-5A(Nu2 20y Tty wi))

Conjugate prior for p ?

Priors:
p(plly) = (2m)792|1p|"° exp(—0.5lyu?), zero mean
Gaussian with precision [y = v “g-prior”

p(Ag, h) = £5AI0 exp(—hA), Gamma

distribution with shape g and inverse scale h.




Priors ctd.

Gaussian defined for x € R

Gaussian pdf p=0 A=1

0.4

0.2

0.151
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Priors ctd.

Gaussian defined for z € ® Gamma defined for z € %[z > 0

Gaussian pdf u=0 A=1 Gamma distribution for various values of g and h
0.4 T T : . 25 T T T T T T T T T
—— @:0.50 h:0.10
0.35F | —— g: 0.50 h:1.10
- g:0.50 h:2.10
2 ——  g:1.00 h:0.10 |
03 E —>— @:1.00 h:1.10
g: 1.00 h:2.10
g: 1.50 h:0.10
0.251 1 x g: 1.50 h:1.10 | |
x g: 1.50 h:2.10
x g: 2.00 h:0.10
2 i x g: 2.00 h:1.10
x g: 2.00 h:2.10
015} i g: 2.50 h:0.10 ||
g: 2.50 h:1.10
- % g: 2.50 h:2.10
01f i
0.05 i
0 L L
-5 -4 4 5
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Prior Times Likelihood

p(D, 11, Alg, b, v) = p(Dl, \)p(p|Av)p(Alg, h)

N+41 hg

= (2~ F sl

X exp(—)\(h+0.5((’7‘|‘ N)p? = 2p ) wn+ in»)

N1 h?

=My

xexp( (h+05((25’3 - 7+N)2))))

X exp(—)\O.S(W + N) (M - %:_zi\?;f)

2| ATz o)

2N e

For normalisation, integrate over A and .
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Integrating out \

We need to solve:

/ A 97D exp(—A\Go) dA
A

=0

Any ideas?
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Integrating out \

We need to solve:

/)\ A 97D exp(—A\Go) dA

=0
Any ideas?
Setting x = Ay, and d\ = < we convert to a Gamma type
integral I'(a) = [~ =~ eXp( r)dz and get:

_N+4+1 hY 1 N +1
p(D, plgs by ) = (27)~ 5 wm( +g)
I'(g) 2

_( N+1
><<h+0.5((2x%—(Z”xn)2))—|—0.5(7—|—N)(M—Z“mn>2> S

Y+ N
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Further Analysis of p(D, u|g, h, )

Compare with student-t distribution:

—Lgl) 0.5 —0.5 (n—0)%k -
p(ul6. 5,) = Il m) <1+ : )

— > last factor proportional to student-t distrbution over u
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Analysis of p(D, u|g, h, ) ctd.

Comparing coefficients:

sznxn , v =N + 2g

N+~

_ (N +29)(N +7)
2h+ 3, 22 — (X, an) /(N +7)

_N+4+1 hY 1 N +1
p(D, plgs by ) = (2m) 5 —WIQF( +g)
I'(g) 2

)2 ~ (M5t +9)
' <h+o.5((;xg_ o) )))
r (%)

X
T <N+§g+1>

KR

—0.5

<N+2g)(N+’7) ((N—|—2g)7r)0'5

2h 4+ 3, a2 — (X, an) /(N +7)

F(Vj;l) 0.5 —0.5 (M—Q)Qﬁ _VTH
X () k|72 (vr) (1—|— y )

Any ideas how to get the marginal likelihood p(D|g, h,~) ?

Combputational Mathematics and Bioinformatics (851.305). Peter Svkacek — p. 26/49



Marginal Likelihood and Posterior

N41
_ _N+1 hY 1 (X, 2n)” _( ’ -I-g)
p(Dlg, h,v) = (2m)" 2 @M? <h+0‘5((;a’%_ v+ N ))>
—0.5

(N +29)(N +7)

N—i—2 71_0.5
2h 4+ 3, 22 — (X, an)? /(N +7) (29)m)

N +2
XP( J;g)

)2 (N;_l-l-9>
p(u, AD, g, h, ) = <h+0.5((; r2 — (%: N) >)>
« ! (N +29)(N + ) -
r(X520) N +29)m) |28+ 2,23 = (S 20) /(N +7)

N+1

><|)\|( 2 +9—1)exp(—)\(h+0-5((’)"|‘N)N2_2“2%1—'_2:6%")))
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A MatlLab Implementation

Note the implementation on the log scale!

function [mrgllh]=prcmn_gauss_mrglh(data, g, h, gam)
% function [mrgllh]J=prcmn_gauss_mrglh(data, g, h, gam)
% calculates the log marginal likelihood of inferring a
% univariate Gaussian under a g-prior like scenario.

%

% (C) P. Sykacek 2007 <peter@sykacek.net>

data=data(’);
ndat=length(data);
sum_Xx_sgr=sum(data.”2);
sgr_sum_x=sum(data).”2;
mrgllh=-(ndat+1)/2 * log(2 *pi) + g *log(h) - gammaln(g) + 0.5 * log(gam);
mrgllh=mrglih-((ndat+1)/2+Qg) *log(h+0.5 *(sum_x_sqgr-sqr_sum_x/(ndat+gam)));
mrgllh=mrglih+gammaln(ndat/2+g)-0.5 * (log(ndat+2  * g)+log(ndat+gam)-...
log(2 *h+sum_x_sqr-sgr_sum_x/(ndat+gam)));
mrgllh=mrglih+0.5 * (log(ndat+2  +g)+log(pi));
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Posterior Dependency on Data Size

Prior settings: ¢ = 1.2, h=0.9and v = 0.1

Inference From 0 Data Points Inference From 5 Data Points

precision
precision

mean

Inference From 50 Data Points

precision
precision

=
>

mean
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Bayesian Model Selection |

All aspects of Bayesian inference:

Parameter inference:

p(D|6,1)p(6|1)
p(D|I)

Note: p(D|I) = fgp(D\H,])p(O\[)dH

p(H‘D’ [) —

Novel part: By including an indicator I, we made
the model class explicit.




Bayesian Model Selection Il

Reasoning about different model classes I
P(I)p(D|I)
p(D)

Note: p(D|I) is just the normalisation constant
from parameter inference.

The above denominator is the normalisation
constant p(D) = >, P(I)p(D|I).

Renormalising the maginal likelihnood of model class 7
multiplied by its prior probability gives thus the posterior
probability of model class I under the data D.

P(I|D) =
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Bayesian Model Selection Il

If we have K models, we may chose P(/) = + to
reflect “ignorance”.

1
K

Model selection will choose model I with the
largest posterior probability.

For equal priors, we select the model with the
largest marginal likelihood. Unlike maximising
the likelihood this quantity does not necessary
lead to the most complex model winning!

If several model classes are equally probable, we
should use P(I|D) for model averaging.




Typical Behaviour

Plot of (approximate) log marginal likelihood in a
binary regression problem (XOR-structure).

XOR-problem in 2 dimensions

-900
-920 -
-940 -

Q
(8]
3
S -960f
>
(3]
[o)]
S
x
S -og0f-
Qo
joR
©

~1000 |-

-1020 -

-1040 :

1 2 3 4 5 6 7

Combputational Mathematics and Bioinformatics (851.305). Peter Svkacek — p. 33/49



The Bayesian Version of a Paired T-Te

The classical paired t-test infers, whether some data are
unlikely under the null hypothesis of being a zero mean
Gaussian with unknown variance.

The Bayesian alternative is inferring the posterior
probabilities, whether a zero mean Gaussian (I = 0), or a
generic Gaussian (I = 1) are more probable under the
dataset.

We choose uninformative priors P(I =0) = P(I =1) =0.5
and need in addition the marginal likelihoods. As we know
the marginal likelihood of the generic Gaussian already, we
need only consider the zero mean Gaussian model.

Combputational Mathematics and Bioinformatics (851.305). Peter Svkacek — p. 34/49



Zero Mean Gaussian Model

Likelihood:
p(DIN) = (277)_%|)\]% exp (—O.BAZ:@%)

and Gamma prior over A:
h9
I'(9)

Derive the marginal likelihood!

p(Alg, h) = =" exp(—Ah)




Marginal Likelihoods and P(I|D)

Zero mean Gaussian:

—(&+9)
p(D|g,h, I =0) = F]Z) (2m) "2 <h+o.5zxi> p(ﬁ +g>

Full Gaussian (from previous calculations):

N +g)

p(Dlg,h 1,1 =1) = (2m) =% 1o <h+0.5(<z T, — (ann)Q))>(

I'(g) v+ N
N + 2
><I‘< —; g)

(N +29)(N +7)
P(I|D) from log marginal likelihoods, where log(p(D, I)) = log(p(D|I)) + log(p(1)):

n
—0.5

(N +2g)m)°-°

2h+ 3,22 — (X, 2n) /(N +7)

1
14> i exp (log(p(D, I = j)) —log(p(D, I = j)))

P(I = i|D) =
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“Bayesian T-Test” Applied

Priors: ¢g =12, h=0.9,v=0.1and P(I) = 0.5

mn: 0 nsmpl: 1 mn: 1 nsmpl: 1 mn: 10 nsmpl: 1

0.5
0
null alt null alt null alt
mn: 0 nsmpl: 10 mn: 1 nsmpl: 10 mn: 10 nsmpl: 10
1 1
0.5 0.5
0 0
null alt null alt null alt
mn: 0 nsmpl: 50 mn: 1 nsmpl: 50 mn: 10 nsmpl: 50
1 1
0.5 0.5
0 0
null alt null alt null alt
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Bayesian Linear Regression

Yo = 20 +¢,, Where, ¢, ~ N(0,]),i.id. zero
mean Gaussian with unknown precision A:

P(yal 0N, @) = (27) 2 [A|2 exp (=05 (y, — 2,,0)°)
Gamma prior over \:

h9
I'(9)

g-prior over d-dim vector of reg. coeffs. 6:

p(Alg, h) = =< A7 exp(—Ah)

p(0]y) = (21) 3| A2 |2 exp(—0.5707~16)




Likelihood and Joint Distribution

We use mat_rix_ notation:

L7 Y1
iBgT Y2
X = y =
x| |y

p(D]O, A\, X) = (2xpi)~ 2 || 2 exp(—0.5A(X0—y)T(XO—y))

Priors times Likelihood: "
_N+d d N+d
p(D,0,)\g,h,v,X)=(27)" "2 |y|2 Tig PN anas

exp(—A(h + 0.5(0"vI0 + (X0 —y)' (X0 — y))))

Note again the Gamma type integral ...
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Marginal Likelihood

Similar to the Gaussian before, we integrate out
A, recover a multivariate Student-t distribution
and renormalise to find the marginal likelihood:

_Ntd, 4 hY N +2g
p(Dlg, h,v, X) = (2m)" 2 |2 F( )
D )= Cn) T (75

T T T x\"1 T —(%3+9)
x(h+0.5(y Yy—y X(fyI+X X) X y))

N~

(N +29)(vI + X' X)
4h + 2 (yTy —yl'X (7]+XTX)_1XTy)

Note: matrix equations! Last term is a determinant.
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An Implementation

Again on the log scale!
function [mrgllh]=bayeslinreg_mrgllh(X, y, g, h, gam)

% calculates the log marginal likelihood for linear regress ion

% under a g-prior like scenario.

% X: regressors

% : response variables

% g,h: gamma prior over precision of Gaussian noise residual S

% gam: g.prior factor for Gaussian prior over regression coe fficients

% mrgllh: log marginal likelihood of the model

% (C) P. Sykacek 2007 <peter@sykacek.net>

ndat=size(X,1);

np=size(X,2);

gam_XtX=eye(np) =*gam+X *X;

ytXinvXy=y'  *Xx pinv(gam_XtX) * X' *vy;

mrgllh=-0.5 *(ndat+np) =*log(2 =*pi)+0.5 =*np=*log(gam)+g =log(h)-gammaln(Q);
mrgllh=mrglih+gammaln(0.5 * (ndat+2 *Q));

mrgllh=mrglih-(0.5 * (ndat+np)+g) *log(h+0.5 =*(y *y-ytXinvXy));

mrgllh=mrglih-0.5 * log(det((ndat+2 *Q)/(4 +*h+2+(y’ *y-ytXinvXy))  *gam_XtX));
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Can Help Here?

Detect phase of a noisy sine wave.

Phase Shift Sine Phase Shift Sine

1 1
0.5¢1 1 0.51
Or 0
~05| | -0.5| 1 Noisy sine wave as
-1 ' : -1 : : response y.
50 100 150 200 250 300 50 100 150 200 250 300
Phase Shift Sine Which One Am I?
1 : 1 - - - . .
Try all phase shifted sines
0.5¢1
as regressors .
0.
0% And compare marginal
- 50 100 150 200 250 300 50 100 150 200 250 300 likelihoods.

Combputational Mathematics and Bioinformatics (851.305). Peter Svkacek — p. 42/49



Result Using Equal Priors

We find the largest evidence for the middle position:

Log Marginal Likelihood Over Phase Shifts

—-865

-870

-875

—-880

—885
1

And Model Probabilities
0.7 T T T T T

0.6
0.5
0.4
0.3
0.2
0.1F
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Predictive Distribution

Bayesian predictions require predicting with
uncertainty. This is obtained by providing a
predictive distribution:

Pl D.g ) = [ [ p(1lE A O)p(N.BID. 5.1 )dAd0
A
n. unknown prediction of regressor £. Here:

p(n]€, X, 0) = (2m) 72| A2 exp(—0.5\(n — £76)?)

Solution: multiply p(n|&, A, @) with the likelihood function
and priors and integrate out & and \. Your guess for the
functional form of the predictive distribution?
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You are Right! It's a Student-t!

with

v=N+2g

. AT Xy

TZ 1 T¢TA e

N /(1 €'AE

Combu
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Linear Predictive Distributons

Estimation From Five Samples: Predictive Uncertainty Dominated by Model Uncertainty
20 T T T T T T T T T

10

-30 ! ! ! ! ! ! ! ! !
-10 -8 -6 -4 -2 0 2 4 6 8 10

Estimation From Hundred Samples: Predictive Uncertainty Dominated by Residual Uncertain
30 T T T T T T T T

20

10

0
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Nonlinear Predictions

As long as we have a linear in the parameters model!

Nonlinear Prediction From Linear Model

S T
. ‘, '\/

-
-
=
“ -
“~ Y .

. - -
: .—\\—'-'.'_'
-
'
- -

Trick: project x into a nonlinear space and perform linear
regression.
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Model inference is based on Bayes theorem:

0)p(D|0)
p(D)

po|D) = 2

and marginalisation:

[, p(D.0|1)doP(I)
P(I|D) = >, [, p(D,0|1)p(I)do

Inference results are either decisions after maximising
expected utilities or posteriors summarising all uncertainty.
An important advantage of Bayesian statistics is to provide
a consistent framework for all inference tasks.
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This lecture captured only very simple models that gave
rise to analytically tractable calculations.

For models which include nonlinearities the integrals can
not be solved analytically and explicit (exact) solutions do
not exist.

If you are interested in advanced Bayesian methods that
allow solving more complex problems you are warmly
Invited to attend 793.492 “Bayesian Data Analysis in the
Life Scienes”. This new 3.0 hrs VU starts in winter term
2007/2008. It will cover advanced aspects and include
practical analysis sessions (2*8 hrs theory and 3 days
blocked in the PC lab).
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