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Outline

• Define probabilistic sensor fusion and propose a model for

this purpose.

• Illustration of properties of such models w.r.t. Bayesian the-

ory and information fusion.

• Propose a “sensor fusing” model for time series classification.

• Short discussion of a MCMC approach for inference of the

proposed model

• Experimental evaluation and conclusion.
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A simple idea: the world is one probabilistic model

• Applications often require hierarchical structure: a feature

extraction part and a probabilistic model.

• Classical approach: treat both parts separately and thus re-

gard features as sufficient statistic of the data. − > Features

are deterministic variables.

• Our suggestion: treat such hierarchical settings as one prob-

abilistic model. − > Feature extraction is a representation in

a latent space.
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Probabilistic sensor fusion
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Some Bayesian motivations for our suggestion

• We infer features from limited amount of data.

− > Predicting the state of interest (t), considers parameter

and model uncertainty. Sensor fusion is based on certainty

of information.

• The idea provides also a consistent prior in the feature space.

Classical settings fail since their priors neglect infromation

obtained from previous observations.
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Marginal inference in a näıve Bayes’ model
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Suppose we want the probability P (t|Xa,Xb) for the above DAG:

P (t|Xa,Xb) =
p(Xa)p(Xb)

p(Xa,Xb)

1

P (t)

(∑

Ia

∫

ϕa

P (t|ϕa, Ia)p(ϕa, Ia|Xa)dϕa

×
∑

Ib

∫

ϕb

P (t|ϕb, Ib)p(ϕb, Ib|Xb)dϕb

)
, (1)
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Illustration of certainty based P (t|Xa,Xb) vs. conditioning
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Similar: expected values in the latent space
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A probabilistic model for time series classification

• The objective is to classify successive segments of multivari-

ate time series data

• To allow for temporal correlations we use a hidden Markov

model like architecture

• The latent feature space is modeled by diagonal Gaussian

and Multinomial distributions

• Class labels are modeled by Multinomial distributions

− > Gaussian and Multinomial observations hidden Markov model

(GMOHMM)
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The GMOHMM
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Legend:

variable meaning variable meaning
ti class label di state variable

ϕi,s feature variable Ii,s model indicator
λi,s noise precision s sensor number
Xi,s time series segment T transition probabilities
W class probabilities µs kernel means
Σs kernel covariances P s indicator probabilities

δT , δW , δP prior counts ξs, κs Gaussian prior
αs, βs Gamma prior gs, hs Gamma prior

αλ Jeffrey’s prior i time index
si,s sufficient statistics
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A feasible representation of the latent space

...based on second order statistics of the time series.

• We must use reflection coefficients (i.e. partial correlation

coefficients) since unlike AR cfs. this representation does

not depend on the model order.

• We want to model p(ϕIi,s
|di) by Gaussians. However ϕi,s ∈

<Ii,s and assuming dynamic stability there is a mismatch with

ρi,s ∈ [−1,1]Ii,s ⊂ <Ii,s.

− > To adjust that, we use the homomorphic transformation

ϕi,s = artanh(ρi,s).
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AR model

x[t] =

Ii,s∑

m=1

am
Ii,s

x[t−m] + ε[t] (2)

y[t]: sample of the time series; Ii,s: model order; am
Ii,s

: m-th AR

coefficient; ε[t]: sample of i.i.d. white noise with precision λi,s.

... in lattice filter representation (Levinson-Durbin recursion):

aIi,s+1 =


aIi,s

+ ρ(Ii,s+1)a
ª
Ii,s

ρ(Ii,s+1)


 (3)

Reparameterise aIi,s
as reflection coefficients. ρIi,s

: Ii,s-th reflec-

tion coefficient; aIi,s
ª: Ii,s-th order AR coefficient vector multi-

plied by an exchange matrix.
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Inference (I): Conjugate priors

• Each component mean gets a Gaussian prior: µi,s ∼ N1(ξs, κ
−1
s ).

• We have diagonal covariance matrices − > each diagonal
element has an independent Gamma prior: Σi,s[j, j]

−1 ∼
Γ(αs, βs[j]).

• The hyper-parameters get Gamma priors: βs[j] ∼ Γ(gs, hs[j]).

• The state conditional class probabilities have Dirichlet priors:
W ∼ D(δW , .., δW ).

• The transition probabilities have Dirichlet priors: T ∼ D(δT , .., δT ).

• The observation probabilities of model orders have Dirichlet
priors P s ∼ D(δP , .., δP ).

• The precision λi,s gets a Jeffrey’s prior. That is the scale
parameter aλ is set to 0.
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Inference (II): MCMC method

• Integrals occuring during inference not analytically tractable

− > approch it with MCMC methods. Whenever possible

use Gibbs updates (standard and easily found in literature).

• Focus here on updates for marginalizing the latent feature

space.

We assume:

• admissible model orders between 0 and Imax.

• set P (move(CI− > CI+1)|CI) ≡ P (move(CI+1− > CI)|CI+1).

marginalizing the latent feature space − > 2 move types min-

imum: a) within model class CI; b) between successive model

classes CI and CI+1.
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Metropolis Hastings for updates within model class

A convenient proposal (likelihood ratio × proposal ratio is 1!):

ϕ′i,s = artanh(ρ(a′i,s)) (4)

where

a′i,s ∼ Stν(â,Σ)

with

â = A−1r

Σ = A−1(R0 − rTA−1r)

2ν
ν = N − Ii,s

A: Ii,s-dimensional sample auto-covariance matrix, R0: sample

variance, r = [R1, ..., RIi,s+1]
T : vector of sample auto-correlations

at lags 1 to Ii,s+1; and N :number of samples in time series Xi,s.
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... gives prior ratio as acceptance probability:

a = min



1,

p(ϕ′i,s)
∣∣∣∣∣
∂ϕ′

i,s

∂a′i,s

∣∣∣∣∣

p(ϕi,s)
∣∣∣∣
∂ϕi,s
∂ai,s

∣∣∣∣




. (5)

We may calculate the Jacobian in analogy with Levinson-Durbin

recursion (3).
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Reversible jump MC for moves between model classes

Partial proposal from CIi,s
to CIi,s+1 (only one new reflection

coefficient):

ϕ′i,s = [ϕi,s,artanh(ρ)] (6)

where

ρ ∼ Stν(ρ̂, σ)

with

ρ̂ = −k2

k1

σ =

√√√√ 1− ρ̂2

2(N − 1)

ν = N − 1

k1 = R0 + 2aT
i,sr0 + aT

i,sA0ai,s

k2 = RI+2 + 2rT
0ai,s

ª + aT
i,sA0ai,s

ª.
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Acceptance probability of this move:

a = min


1,

(
1− k2

1

k2
2

)−N−1
2 √

π

2

Γ(N−1
2 )p(ϕ′i,s)p(Ii,s + 1)

Γ(N
2 )p(ϕi,s)(1− ρ2)p(Ii,s)


 , (7)

For updates from CIi,s+1 to CIi,s
, we drop the last dimension

from ϕi,s and invert the second argument of the min operation

in Equation (7).
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Experiments

... to assess whether and what we gain by using a latent feature

space. We use:

• synthetic data with and without artefacts

• single trial EEG with emphasis on classification of cognitive

state of the brain, i.e. a brain computer interface.

• sleep EEG with emphasis on classification of sleep spindles.

and compare the classification performance of the latent feature

space GMOHHM with the performance of the GMOHMM when

conditioning on point estimates.
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Synthetic data

Generate as target labels a state sequence (200 training, 600 test).

if state ≡ 1: generate data using reflection cfs.: (0.9, -0.8, 0.5)

if state ≡ 2: generate data using reflection cfs.: (0.9, -0.7, 0.6)

Each segment has 200 samples, generated with noise level σ = 1. Due to

sampling effects we obtain a data set with Bayes error > 0. In order to get

a more realistic problem, we use a second state sequence to replace 20% of

the segments with white noise.
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Probabilities on clean and noisy data
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ROC curves on clean and noisy data
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Classifying cognitive tasks (BCI)

Settings of the cognitive experiment:

• Ten young healthy untrained subjects.

• Two cognitive task pairings: auditory-navigation (A) and left
motor-right motor imagination (B).

• Three electrode sites: T4, P4 (right tempero-parietal for
spatial and auditory tasks), C3’ , C3” (left motor area for
right motor imagery) and C4’ , C4” (right motor area for
left motor imagery) and ground at left mastoid process.

• Silver-silver chloride electrodes, ISO-DAM system (gain 104,
filter with pass band between 0.1 Hz and 100 Hz). Sampled
with 384 Hz and 12 bit resolution.

• Each cognitive experiment was performed 10 times for 7
seconds.
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Settings of the computer experiment:

• Evaluations are done by 10 fold cross validation.
• Realistic performance estimates − > classify all half second segments.
• No additional filtering.
• Draw 6000 samples from the posterior and regard the first 1000 samples

as burn in.
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Classification of sleep spindles

Data: two subjects, 7 minutes of EEG each, 3 EEG channels

(F4, C4 and P4). sampled at 102.4Hz.

Objective: classify segments (64 samples) for sleep spindles.
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... and ROC curve
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Summary generalization errors

task condition integrate sig. level
synthetic clean 5.5% 3.3% p = 0.02
synthetic noisy 12.2% 9.8% p = 0.02

left vs. right motor 26% 23% p < 0.01
auditory vs. navigation 24.5% 20% p < 0.01

spindle 8.8% 7.3% p = 0.045
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Discussion

• Generalization results confirm that latent feature spaces are

not only a Bayesian curiosity.

• Disadvantage is an increased computational complexity. Sweeps

remain O(n) (n... number of samples) but latent feature

space requires larger number of samples.

• Method not feasible for large problems (e.g. all night sleep

analysis) or online application (e.g. BCI)

• Downsizing is an issue! (e.g. mean field methods instead of

MCMC).
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A closer analysis of the probability plots suggests that we usu-

ally improve results. However, integration also introduces some

mistakes.
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Generalization results:
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Generalization errors (differences highly significant!):

conditioning marginalize features full integration
24.7% 12.8% (1 vs. 2 p ¿ 0.01) 9.5% (3 vs. 2 p ¿ 0.01)
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